
Microwave Semiconductor Diode and Transistor Designer's Catalog 1984-85

Intensive research and development of advanced manufacturing techniques has enabled Hewlett-Packard to become a high volume supplier of quality, competitively priced RF/Microwave Diodes and Transistors.

In addition to our broad product line, Hewlett-Packard also offers the following services: Applications support, special testing for customer requirements and a one year guarantee on all of our products. Each product accepted for commercial sale has been tested for reliability during the development phase and is subject to quality assurance procedures throughout the manufacturing process.

This package of products and services has enabled Hewlett-Packard to become a recognized leader in the Semiconductor Industry.

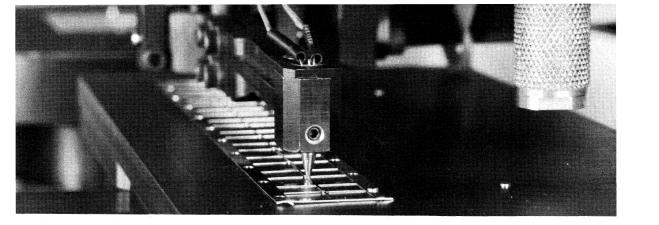


Table of Contents

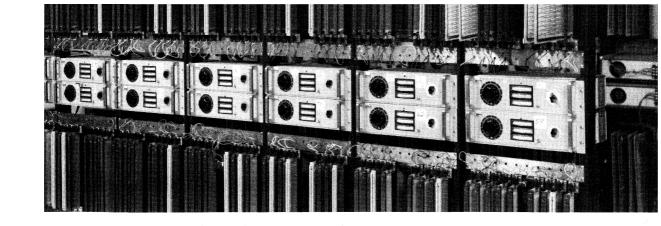
Ordering Information vii
Alphanumeric Index viii
High Reliability
Quality and Reliability
Silicon Bipolar Transistors
Schottky Barrier Diodes
PIN and High Conductance Diodes
Step Recovery Diodes
Integrated Products
Appendix 309
Package Outlines

Identifies newly introduced products or capabilities New products are also indicated by boldface listings in the Numeric Index.

A Brief Sketch

Hewlett-Packard is one of the world's leading designers and manufacturers of electronic, medical, analytical, and computing instruments and systems, diodes, transistors, integrated products, and optoelectronic products. Since its founding in Palo Alto, California, in 1939, HP has done its best to offer only products that represent significant technological advancements.

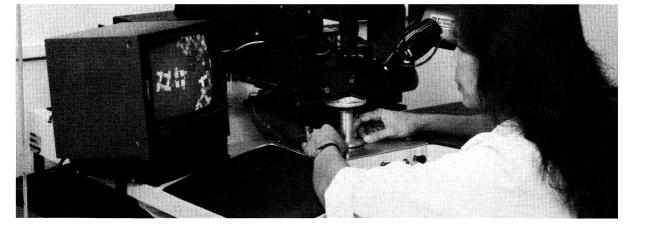
To maintain its leadership in instrument and component technology, Hewlett-Packard invests heavily in new product development. Research and development expenditures traditionally average about 10 percent of sales revenue. This level of commitment enables the company to employ the latest technologies in developing innovative products that can be reliably produced, delivered, and supported on a continuing basis.


HP produces more than 3,500 products at our domestic divisions in California,

Colorado, Washington, Oregon, Idaho, Massachusetts, New Jersey and Pennsylvania and at overseas plants located in the German Federal Republic, England, Scotland, France, Japan, Singapore, Malaysia, Brazil, Mexico and Puerto Rico.

However, for the customer, Hewlett-Packard is no further away than the nearest telephone. Hewlett-Packard currently has sales and service offices located around the world. (Pg. 318).

These field offices are staffed by trained engineers, each of whom has the primary responsibility of providing technical assistance and data to customers.


A vast communications network has been established to link each field office with the factories and with corporate offices. No matter what the product or the request, a customer can be accommodated by a single contact with the company.

RF and Microwave Semiconductors

Hewlett-Packard's manufacturing plant located in San Jose, California, houses such modern equipment as projection mask aligning and automation handling systems. Ion implantation, new evaporation and wet processing systems, and scanning electron microscopy provide the basis for quality and dependability for the entire product line.

When quality represents a competitive edge, or when reputation and dependability of your products is on the line, you can count on Hewlett-Packard RF and Microwave Semiconductor Devices for excellent product consistency.

About This Catalog

This Microwave Semiconductor Devices Designer's Catalog contains detailed and up-to-date specifications of our complete line of RF and microwave products. This catalog is divided into 4 product sections: Silicon Bipolar Transistors, Schottky Barrier Diodes, PIN and High Conductance Diodes, and Step Recovery Diodes. At the end of each section, a complete index of application notes and bulletins pertaining to the use of those products is included.

Also included in each section where possible are the equivalent circuits of each product. These will be of use in the computer-aided design circuits.

In the transistor product data sheets, the Absolute Maximum Ratings table indicates the limits of the device. Operation in excess of any of these conditions may result in permanent damage to the device. Information concerning the MTTF design goals for the devices is included in "Reliability Performance of Bipolar Transistors", page 108, as well as on the product data sheets.

How To Use This Catalog

Three methods are incorporated for locating components:

- A table of contents that allows you to locate devices by their general description.
- An alphanumeric index that lists all devices by part number plus generic chip part numbers.
- Selection guides at the beginning of each product section generally grouping products by major specification, frequency, etc.

Although product information and illustrations in this catalog were current at the time it was approved for printing, Hewlett-Packard, in a continuing effort to offer excellent products at a fair value, reserves the right to change specifications, designs, and models without notice.

Ordering Information, After Sales Services

How To Order

All Hewlett-Packard components may be ordered through any of the Sales and Service offices listed on page 318. In addition, for immediate off-the-shelf delivery of Hewlett-Packard RF and Microwave Semiconductor devices, contact any of the worldwide stocking distributors and representatives listed on page 315.

Warranty

As an expression of confidence in our products to continue meeting the high standards of reliability and performance that customers have come to expect, Hewlett-Packard Microwave Semiconductor Products carry the following warranty.

HP's Components are warranted against defects in material and workmanship for a period of one year from the date of shipment. HP will repair or, at its option, replace components that prove to be defective in material or workmanship under proper use during the warranty period. This warranty extends only to HP customers.

NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

EXCLUSIVE REMEDIES

THE REMEDIES PROVIDED HEREIN ARE BUYER'S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CONTRACT TORT OR ANY OTHER LEGAL THEORY.

Certification

Some customers are especially interested in the test and quality assurance programs that HP applies to its products. These Hewlett-Packard programs are documented in a Certificate of Conformance which is available upon request at the time of purchase. This certification states:

We certify that the Microwave Semiconductor Division devices were duly tested and inspected prior to shipment and that they met all of the published specifications for these devices.

Hewlett-Packard's calibration measurements are traceable to the National Bureau of Standards to the extent allowed by the Bureau's calibration facilities.

The Hewlett-Packard Quality Program satisfies the requirements of MIL-Q-9858A, MIL-I-45208A, MIL-S-19500, MIL-C-45662A, and NASA 5300.4 (I.C.)

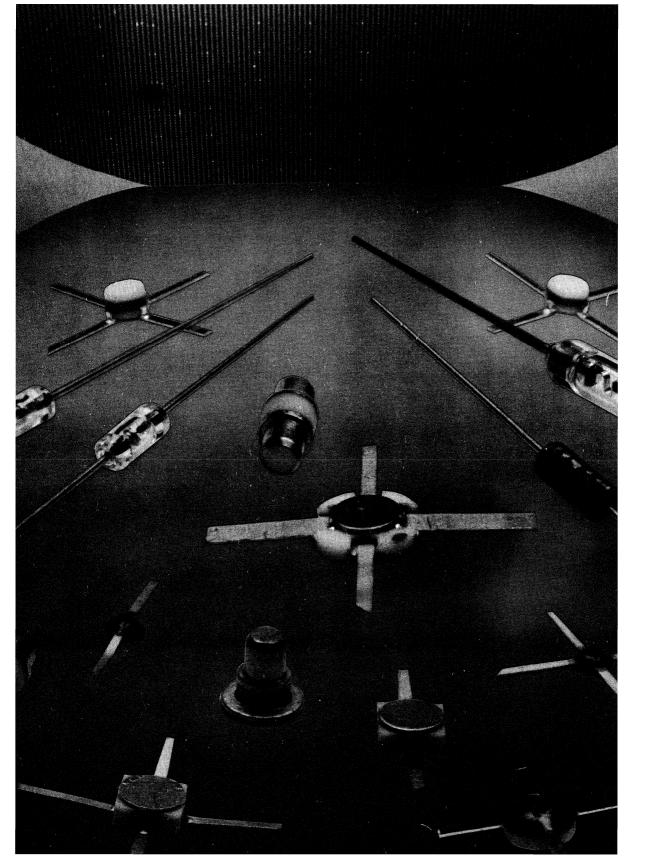
Service

We firmly believe that our obligation to you as a customer goes much beyond just the delivery of your new HP product. This philosophy is implemented by Hewlett-Packard in two basic ways: (1) by designing and building excellent products with good serviceability, and (2) by backing up those products with a customer service program which can respond to your needs with speed and completeness.

The HP customer service program is one of the most important facets of our worldwide operations, providing a local service capability in many of our field offices (listed on page 318). Indeed, this customer service program is one of the major factors in Hewlett-Packard's reputation for integrity and responsibility towards its customers.

ALPHANUMERIC INDEX

MODEL NO.	DESCRIPTION	CHIP	NO.
HPND-4001 HPND-4005 HPND-4050 HPND-4165 HPND-4166	Beam Lead PIN Diode Beam Lead PIN Diode Beam Lead PIN Diode RF PIN Diode RF PIN Diode RF PIN Diode	5082-0012	
HSCH-0812 HSCH-0813 HSCH-0814	Hi Rel Zero Bias Schottky (HSCH-3486) Matched Pair HSCH-0814 (5082-2401) Hi Rel Schottky Barrier Diode (5082-2400)		176
HSCH-0815 HSCH-0816	Matched Pair HSCH-0816 (5082-2306)		176
HSCH-1001 HSCH-1111 HSCH-3206 HSCH-3207 HSCH-3486	General Purpose Schottky Diode (1N6263) Hi Rel Schottky Chip Zero Bias Detector Schottky Diode Zero Bias Detector Schottky Diode Zero Bias Detector Schottky Diode	5082-0013 5082-0013	
HSCH-5310 HSCH-5311 HSCH-5312 HSCH-5313 HSCH-5314	Medium VF Schottky Beam Lead Batch Matched HSCH-5310 Medium VF Schottky Beam Lead Batch Matched HSCH-5312 Ku Band Medium VF Schottky Beam Lead		
HSCH-5315 HSCH-5316 HSCH-5317 HSCH-5318 HSCH-5319	Batch Matched HSCH-5314 Medium VF Schottky Beam Lead Batch Matched HSCH-5316 X-Band Medium VF Schottky Beam Lead Batch Matched HSCH-5318		
HSCH-5330 HSCH-5331 HSCH-5332 HSCH-5333 HSCH-5334	Low VF Schottky Beam Lead Batch Matched HSCH-5330 Low VF Schottky Beam Lead Batch Matched HSCH-5332 Ku Band Low VF Schottky Beam Lead		
HSCH-5335 HSCH-5336 HSCH-5337 HSCH-5338 HSCH-5339	Batch Matched HSCH-5334 Low VF Schottky Beam Lead Batch Matched HSCH-5336 X-Band Low VF Schottky Beam Lead Batch Matched HSCH-5338		
HSCH-5510 HSCH-5511 HSCH-5530 HSCH-5531 HXTR-2001	Ku Band Med VF Schottky Beam Lead Pair Med VF Schottky Beam Lead Pair Ku Band Low VF Schottky Beam Lead Pair Low VF Schottky Beam Lead Pair General Purpose Transistor Chip		
HXTR-2101 HXTR-2102 HXTR-3001 HXTR-3002 HXTR-3101	General Purpose Transistor (2N6679) General Purpose Transistor General Purpose Transistor Chip Linear Power Transistor Chip Low Cost General Purpose Transistor	HXTR-2001	
HXTR-3102 HXTR-3103 HXTR-3104 HXTR-3615 HXTR-3645	Low Cost General Purpose Transistor Linear Power General Purpose Transistor (2N6838) Linear Power Transistor (2N6839) Low Cost Low Noise Transistor Low Cost High Performance Transistor	HXTR-3001	58 61


MODEL NO.	DESCRIPTION	GENERIC CHIP	PAGE NO.
HXTR-3675 HXTR-4101 HXTR-5001 HXTR-5002 HXTR-5101	Low Cost High Performance Transistor General Purpose Oscillator Transistor Linear Power Transistor Chip Linear Power Transistor Chip Linear Power Transistor (2N6701)	HXTR-2001	
HXTR-5102 HXTR-5103 HXTR-5104 HXTR-6001 HXTR-6101	Linear Power Transistor Linear Power Transistor (2N6741) Linear Power Transistor Low Noise Transistor Chip Low Noise Transistor (2N6617)	HXTR-5001	
HXTR-6102 HXTR-6103 HXTR-6104 HXTR-6105 HXTR-6106	Low Noise Transistor (2N6742) Low Noise Transistor (2N6618) Low Noise Transistor (2N6743) General Purpose Transistor General Purpose Transistor	HXTR-6001	92 95 98
HXTR-7011 HXTR-7111 JAN 1N5711 JAN 1N5712 JAN 1N5719	Low Noise Transistor Chip Low Noise High Performance Transistor MIL-S-19500/444 Schottky Diode MIL-S-19500/445 Schottky Diode MIL-S-19500/443 PIN Diode	HXTR-7011 5082-0024 5082-0087 5082-0012	
JANTX 1N5711 JANTX 1N5712 JANTX 1N5719 JANTXV 1N5711 JANTXV 1N5712	MIL-S-19500/444 Schottky Diode MIL-S-19500/445 Schottky Diode MIL-S-19500/443 PIN Diode MIL-S-19500/444 Schottky Diode MIL-S-19500/445 Schottky Diode	5082-0087 5082-0012 5082-0024 5082-0087	
TXVB-2810 TXVB-2811 TXVB-2835 TXVB-3001 TXVB-3002	Hi-Rel 5082-2810 Hi-Rel 5082-2811 Hi-Rel 5082-2835 Hi-Rel 5082-3001 Hi-Rel 5082-3002		
TXVB-3039 TXVB-3042 TXVB-3043 TXVB-3077 TXVB-3080	Hi-Rel 5082-3039 Hi-Rel 5082-3042 Hi-Rel 5082-3043 Hi-Rel 5082-3077 Hi-Rel 5082-3080		
TXVB-3141 TXVB-3168 TXVB-3188 TXVB-4001 TXVB-4005	Hi-Rel 5082-3141 Hi-Rel 5082-3168 Hi-Rel 5082-3188 Hi-Rel 5082-4001 Hi-Rel 5082-4005		269
TXVB-4050 TXVW-5300 Series TXVW-5500 Series 1N5165 1N5166	Hi-Rel 5082-4050 Hi-Rel HSCH-5300 Beam Leads Hi-Rel HSCH-5500 Beam Leads Schottky Diode (See 5082-2301) Schottky Diode (See 5082-2302)		
1N5167 1N5711 1N5712 1N5719 1N5767	Schottky Diode (See 5082-2303) H V General Purpose Schottky Diode (5082-2800) General Purpose Schottky Diode (5082-2810) PIN Diode (5082-3039) PIN Diode (5082-3080)	5082-0024 5082-0087 5082-0012	
1N6263 2N6617 2N6618 2N6679 2N6701	General Purpose Schottky Diode (HSCH-1001) Low Noise Transistor (HXTR-6101) Low Noise Transistor (HXTR-6103) General Purpose Transistor (HXTR-2101) Linear Power Transistor (HXTR-5101)	HXTR-6001	

MODEL NO.	DESCRIPTION	GENERIC CHIP	PAGE NO.
2N6741 2N6742 2N6743 2N6838 2N6839	Low Noise Transistor Low Noise Transistor Low Noise Transistor General Purpose Transistor (HXTR-3103) Linear Power Transistor (HXTR-3104)	HXTR-6102 HXTR-6104 HXTR-3001	
5082-0001 5082-0008 5082-0009 5082-0012 5082-0013	High Speed Switch PIN Chip Step Recovery Diode Chip X-Band Schottky Detector Chip PIN Switching Diode Chip Low V _F Mixer/Zero Bias Detector Schottky Chip		
5082-0015 5082-0017 5082-0018 5082-0020 5082-0021	Step Recovery Diode Chip		
5082-0023 5082-0024 5082-0025 5082-0029 5082-0030	X-Band Schottky Mixer Chip High Voltage Switching Schottky Chip AGC PIN Chip Ku-Band Schottky Mixer Chip PIN Switching Diode Chip		
5082-0031 5082-0032 5082-0034 5082-0039 5082-0041	General Purpose Schottky Chip Step Recovery Diode Chip VHF/UHF Switching PIN Chip AGC PIN Chip X-Band Schottky Mixer Chip		
5082-0047 5082-0049 5082-0057 5082-0058 5082-0087	PIN Switching Diode Chip Medium Power Switch PIN Chip General Purpose Schottky Diode Chip General Purpose Schottky Diode Chip General Purpose Schottky Chip		
5082-0090 5082-0094 5082-0097 5082-0112 5082-0113	Step Recovery Diode Chip General Purpose Schottky Diode Chip General Purpose Schottky Chip Step Recovery Diode Step Recovery Diode	5082-0015	
5082-0114 5082-0132 5082-0151 5082-0153 5082-0180	Step Recovery Diode	5082-0015 5082-0018 5082-0018	
5082-0241 5082-0243 5082-0253 5082-0300 5082-0310	Step Recovery Diode	5082-0018 5082-0017	297
5082-0320 5082-0335 5082-0800 5082-0803 5082-0805	Step Recovery Diode	5082-0008	
5082-0810 5082-0815 5082-0820 5082-0821 5082-0825	Step Recovery Diode	5082-0090 5082-0090	

MODEL NO.	DESCRIPTION	GENERIC CHIP		AGE NO.
5082-0830 5082-0833 5082-0835 5082-0840 5082-0885	Step Recovery Diode	5082-0020 5082-0008 5082-0008		294 297 294
5082-1001 5082-1002 5082-1006 5082-2080 5082-2200	High Conductance Diode (1N4456) High Conductance Diode High Conductance Diode Batch Matched 5082-2835 Schottky Hermetic Stripline Schottky Diode	5082-0031		248 248 141
5082-2201 5082-2202 5082-2203 5082-2207 5082-2208	Batch Matched 5082-2200 Hermetic Stripline Schottky Diode Batch Matched 5082-2202 Stripline Schottky Diode Batch Matched 5082-2207	HSCH-5316 HSCH-5317 HSCH-5316	***************************************	146 146 146 146 146
5082-2209 5082-2210 5082-2231 5082-2233 5082-2263	Stripline Schottky Diode Batch Matched 5082-2209 Low VF Hermetic Stripline Schottky Quad Low VF Hermetic Stripline Schottky Quad Hermetic Stripline Schottky Ring Quad	HSCH-5317 5082-9397 5082-9397		146 146 151 151 151
5082-2271 5082-2272 5082-2273 5082-2274 5082-2277	Low VF Stripline Schottky Diode Quad Low VF Stripline Schottky Diode Quad Ku-Band Schottky Mixer Diode Matched pair of 5082-2273 C-Band Stripline Schottky Ring Quad	5082-9395 5082-0029 5082-0029		151 151 154 154 151
5082-2279 5082-2280 5082-2291 5082-2292 5082-2294	Low VF Broadband Stripline Schottky Quad Low VF Broadband Stripline Schottky Quad Stripline Schottky Ring Quad Stripline Schottky Ring Quad Stripline Schottky Ring Quad	5082-9399 5082-9696 5082-9696		151 151 151 151 151
5082-2295 5082-2296 5082-2297 5082-2298 5082-2301	X-Band Low V _F Schottky Diode Matched pair of 5082-2295 X-Band Low V _F Schottky Diode Matched pair of 5082-2297 Schottky Barrier Diode	5082-0013 5082-0013 5082-0013		154 154 154 154 141
5082-2302 5082-2303 5082-2305 5082-2306 5082-2308	Schottky Barrier Diode Schottky Barrier Diode Schottky Barrier Diode Matched pair of 5082-2301 Matched pair of 5082-2303			141 141 141 141 141
5082-2350 5082-2351 5082-2356 5082-2370 5082-2396	Schottky Barrier Diode Matched pair of 5082-2350 Matched Encapsulated Bridge Quad Matched Quad of 5082-2303 Unconnected Matched Encapsulated Ring Quad			154 154 141 141 141
5082-2400 5082-2401 5082-2520 5082-2521 5082-2565	Schottky Barrier Diode Matched pair of 5082-2400 Schottky Barrier Diode Matched pair of 5082-2520 Schottky Barrier Diode			154 154 154 154 154
5082-2566 5082-2701 5082-2702 5082-2706 5082-2707	Matched pair of 5082-2565 X-Band Schottky Mixer Diode X-Band Schottky Mixer Diode Matched pair of 5082-2701 Matched pair of 5082-2702	5082-0023 5082-0023 5082-0023		154 154 154 154 154

		GENERIC		PAGE
MODEL NO.	DESCRIPTION	CHIP		NO.
5082-2711 5082-2712 5082-2713 5082-2714 5082-2723	X-Band Schottky Mixer Diode Matched pair of 5082-2711 X-Band Schottky Mixer Diode Matched pair of 5082-2713 Ku-Band Schottky Mixer Diode	5082-0023 5082-0023 5082-0023		154 154 154
5082-2724 5082-2750 5082-2751 5082-2755 5082-2765	Matched pair of 5082-2723 Schottky Detector Diode Schottky Detector Diode Schottky Detector Diode Low VF Hermetic Stripline Schottky	5082-0009 5082-0009		165 165 165
5082-2766 5082-2774 5082-2775 5082-2785 5082-2786	Batch Matched 5082-2765 Low VF Stripline Schottky Diode Batch Matched 5082-2774 Low VF Hermetic Stripline Schottky Batch Matched 5082-2785	HSCH-5336 HSCH-5337 HSCH-5336	·	146 146 146
5082-2787 5082-2794 5082-2795 5082-2800 5082-2804	Schottky Detector Diode Low VF Stripline Schottky Diode Batch Matched Pair of 5082-2794 H V General Purpose Schottky Barrier Diode (1N5711) Matched Pair of 5082-2800 Unconnected	HSCH-5336 HSCH-5337 5082-0024		146 146 141
5082-2805 5082-2810 5082-2811 5082-2813 5082-2814	Matched Quad 5082-2800 Unconnected	5082-0087 5082-0097 5082-0097		141 141 141
5082-2815 5082-2817 5082-2818 5082-2824 5082-2826	Matched Quad 5082-2811 Unconnected Schottky Barrier Diode Matched Pair of 5082-2817 Schottky Barrier Diode Batch Matched Diode 5082-2811	5082-0097 5082-0097 5082-0097		154 154 . 165
5082-2830 5082-2831 5082-2835 5082-2836 5082-2837	Monolithic Matched Schottky Diode Ring Quad Low VF Monolithic Matched Schottky Quad Low Offset Schottky Diode Batch Matched Diode 5082-2800 Schottky Diode Beam Lead	5082-9697 5082-0031 5082-0024		151 141 141
5082-2900 5082-2912 5082-2970 5082-2997 5082-3001	Schottky Barrier Diode Matched pair of 5082-2900 Unconnected Matched Quad 5082-2900 Unconnected Matched Bridge Quad 5082-2900 Encapsulated RF PIN Diode			141 141 141
5082-3002 5082-3039 5082-3040 5082-3041 5082-3042	RF PIN Diode RF PIN Diode Stripline PIN Diode Stripline PIN Diode RF PIN Diode	5082-0012 5082-0012 5082-0001		229 235 235
5082-3043 5082-3046 5082-3071 5082-3077 5082-3080	RF PIN Diode Stripline PIN Diode Microwave Limiter PIN Diode VHF/UHF PIN Switching Diode HF/VHF/UHF Current Controlled Resistor (1N5767)	5082-0001 5082-0049 5082-0001 5082-0012		229 235 233 229
5082-3081 5082-3101 5082-3102 5082-3140 5082-3141	HF/VHF/UHF Current Controlled Resistor RF Pin Diode RF Pin Diode Hermetic Stripline PIN Diode Hermetic Stripline PIN Diode	5082-0012 5082-0012 5082-0012		246 246 240

MODEL NO.	DESCRIPTION	GENERIC CHIP		PAGE NO.
5082-3168 5082-3170 5082-3188 5082-3201 5082-3202	VHF/UHF Switching PIN Diode Hermetic Stripline PIN Diode VHF/UHF Switching PIN Diode RF PIN Diode RF PIN Diode	5082-0030 5082-0034 5082-0012		240 229 246
5082-3303 5082-3304 5082-3305 5082-3306 5082-3340	RF PIN Diode RF PIN Diode High Speed Switch PIN Diode High Speed Switch PIN Diode Stripline PIN Diode	5082-0030 5082-0001 5082-0001		246 244 244
5082-3379 5082-3900 5082-9394 5082-9395 5082-9396	VHF/UHF Attenuator PIN Diode PIN Diode Beam Lead Beam Lead Quad Beam Lead Quad Beam Lead Quad			226 137 137
5082-9397 5082-9398 5082-9399 5082-9696 5082-9697	Beam Lead Quad			137 137 137
5082-9891	X-Band Schottky Detector Chip		••••	125

High Reliability

Introd	uction								2
Reliab	ility I	esting	100						2
Role o	f Mili	tary S	peelli	catio	15	in the second	meric sens		3
Hi-Re	l Scre	ened I	'rodu	cts	or Reference				5
Marki	ng, Pa	ickagir	α , Sl	пррп	ug ame	i Han	dling	200 (10 m)	2

HIGH RELIABILITY

Introduction

For over 15 years, MSD has been extensively involved in many military and space oriented High Reliability (Hi-Rel) Test programs. The inherent reliability and proven performance of our products has provided a vehicle with which to build a strong record of performance in the demanding requirements of space programs. By having a large group of Marketing and Product Assurance personnel dedicated to the service of Hi-Rel customers. HP has been frequently called upon to provide the high performance, highly reliable components demanded by many military and commercial space probe and satellite programs. Among the many space programs using HP Microwave Semiconductor Division products are Apollo, Viking, Intelsat, Space Shuttle, Indiasat, G-Star. and Westar.

This section of the catalog describes the use of Hi-Rel testing, to demonstrate the quality and reliability of semiconductor devices.

Reliability Testing

Reliability testing is designed to demonstrate the ability of a device to meet electrical requirements over its specified life to a designated confidence level. To achieve this confidence, Hi-Rel devices are either 100% tested or qualified by testing a random sample of devices from the lot

The purpose of 100% testing is to verify the stability of the devices in the completed lot, and verify that devices are in the useful life period (see Figure 1). These tests may be environmental tests or functional tests (i.e. electrical) and are normally referred to as preconditioning and screening tests, respectively.

Sample testing is used to statistically demonstrate the capability of the completed lot

of devices to operate successfully under the specified test conditions. A sample test plan specifies the acceptance level required before the lot is considered qualified. This test plan depends on the level of reliability required, and is mathematically derived.

If a lot does not successfully pass a particular test during Group A sampling, that lot is 100% retested for that particular parameter. This 100% testing will remove any non-conforming devices thereby ensuring that the remaining lot is reliable.

Sample tests are usually divided into Group A, Group B, and Group C tests.

Group A tests are electrical tests used to demonstrate that the parts meet the functional requirements of the particular specification to which they are purchased.

Group B tests are environmental and life tests. They are used to demonstrate the ability of the lot sample to survive test conditions.

Group C tests are also environmental and life tests. They are used to demonstrate the ability of the generic device to meet the requirements of each test. These tests are run infrequently, hence, they are often referred to as periodic tests.

Group B and C life tests verify the length of the useful life period under specified bias conditions (see Figure 1). Some of the Group B and Group C tests render devices unserviceable. These tests are called destructive tests. MIL-S-19500 defines the following tests as destructive:

Solderability Soldering Heat Moisture Resistance

Terminal Strength Salt Atmosphere Salt Spray

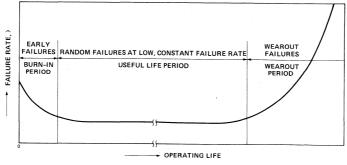


Figure 1.

Role of Military Specifications

There are numerous specifications associated with electronic devices. MIL-S-19500 and MIL-STD-750 are most frequently used to specify test programs, methods and conditions for discrete semiconductors.

MIL-S-19500 is the general specification for discrete semiconductor components. It defines test sequences to achieve different levels of

reliability. MIL-STD-750 defines the actual tests and screening methods, conditions and pass/fail criteria as required by MIL-S-19500. These tests are divided into three categories:

- a. Environmental Tests (1000 Series)
- b. Mechanical Tests (2000 Series)
- c. Electrical Tests (3000 and 4000 Series)

Environmental Tests

MIL-STD-750 Method Test Type Purpose of Test/Simulated Operation		Purpose of Test/Simulated Operation	Frequency of Testing	
1001	Barometric Pressure	Simulates non-pressurized portion of aircraft at high altitude. (Required for products with VBR > 200 V only.)	Group C (periodic)	
1021	Moisture Resistance	Simulates tropical environment of high heat and humidity.	Group C (periodic)	
1022	Resistance to Solvents	Simulates cleaning of boards after device installation. Verifies marking permanency.	Group B	
1026	Steady State Life (λ)	Simulates accelerated electrical operation, t = 1000 hours.	Group C (periodic)	
1027	Steady State Life (LTPD)	Simulates accelerated electrical operation. t = 340 hours.	Group B	
1031	Hi-Temp. Non-Op. Life (λ)	Simulates accelerated shelf life. t = 1000 hours.	Group C (periodic)	
1032	Hi-Temp. Non-Op. Life (LTPD)	Simulates accelerated shelf life and effect of exposure to temperture. t = 24 hours for screen, t = 340 hours for Group B.	100% screen and Group B.	
1038 Diodes	Hi-Temp. Reverse Bias and Burn-in	Simulates time and stress of actual life use on devices. Verifies that devices are in the useful life period.	100% Screen.	
1039 Transistors	Hi-Temp. Reverse Bias and Burn-in	Simulates time and stress of actual life use on devices. Verifies that devices are in the useful life period.	100% Screen.	
1041	Salt Atmosphere	Simulates accelerated exposure to sea coast environment.	Group C (periodic)	
1051	Thermal Shock (Temperature Cycling)	Simulates transfer of parts between extreme environmental conditions.	100% Screen.	
1056	Thermal Shock (Glass Strain)	Ensures mechanical integrity by subjecting devices to sudden changes in temperature.		
1071	Fine Leak/Gross Leak	Verifies that packaging is hermetically sealed.	100% screen.	

Mechanical Tests

MIL-STD-750 Method	Test Type	Purpose of Test/Simulated Operation	Frequency of Testing	
2006	Constant Acceleration	Ensures die attach and wire bond integrity.	100% screen.	
2016	Mechanical Shock	Verifies devices resistance to mechanical stresses.	Group C (periodic)	
2017	Die Shear Test	Verifies integrity of die to package bond.	In process/Group B	
2026	Solderability	Confirms that the leads are able to take an even coating of solder with minimum voids.	Group B	
2031	Soldering Heat	Determines the devices resistance to the high temperature encountered during soldering.	Guaranteed by design.	
2036 A, D, E, F	Terminal Strength	Simulates the leads ability to withstand specified tension, torque, and fatigue.	Group C	
2037	Bond Strength	Verifies integrity of chip to package interconnection	In process/Group B	
2052	PIND (Partical Impact Noise Detection Test)	Detects loose particles in the package cavity.	100% screen	
2056	Vibration Variable Frequency	Simulates mechanical performance of the device when subjected to vibration within the specified frequency range.	Group C (periodic)	
2066	Physical Dimensions	Verifies that dimensions meet the design and specification criteria.	Group C (periodic)	
2071	Visual and Mechanical	Ensures that marking and packaging meet specified requirements.	Group A	
2072	Internal Visual (pre-cap)	Ensures high visual quality of end product.	100% screen	
2073	Die Visual	Ensures high quality, defect-free semiconductor die for assembly use.	100% screen	
2074	Internal Visual (through glass)	Ensures high visual quality of end product.	100% screen	
2075	Decap Design Verification	Verifies that design and construction meet specifications.	Group B	
2076	X-Ray	Non-destructive test performed after final seal that verifies seal integrity, bond integrity, and particle-free cavity.		
2077	Scanning Electron Microscope (SEM)	Verifies quality and acceptability of metallization on semiconductor dice.	Samples from each wafer or lot	

Electrical Tests

Class 3000 and 4000 tests define the acceptable testing methods for semiconductor products.

Hi-Rel Screened Products

Hewlett-Packard provides two types of Hi-Rel products: DESC qualified (JAN) and Standard Hi-Rel

DESC Qualified Products (JAN)

Since a great number of reliability tested devices are used in military programs, the JAN (Joint Army-Navy) system has been established by the U.S. government to provide standardized levels of reliability at minimum cost to all users. There are two major advantages to the JAN type products. First, the specification, and thus the reliability level of the device, is pre-specified for the buyer, eliminating costly creation of special procurement documents. Second, JAN devices can be manufactured in large quantities with subsequent cost reductions.

Three levels of JAN devices are offered by Hewlett-Packard:

- 1. JAN --
 - Shipment lots have had Group B tests performed successfully on a sample basis.
- 2. JAN TX -

The shipment lots have been subjected to 100% screening tests. Individual devices have been serialized, and drift data has been recorded. Group B sample data is then done after screening.

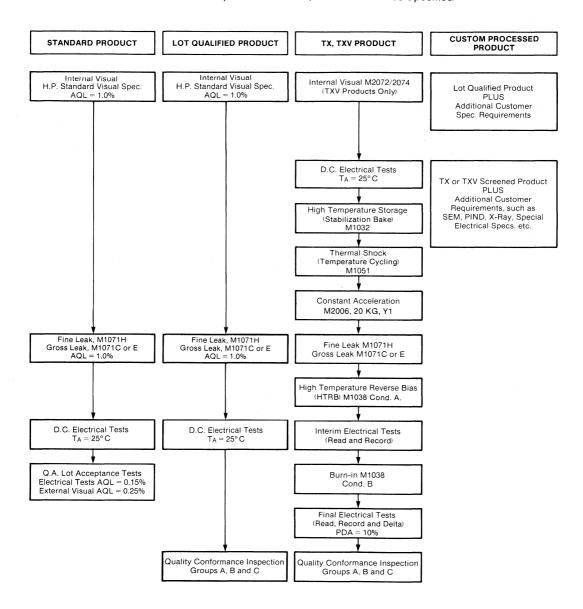
3. JAN TXV --

These are the same level as JAN TX with the additional requirement of a pre-closure visual inspection.

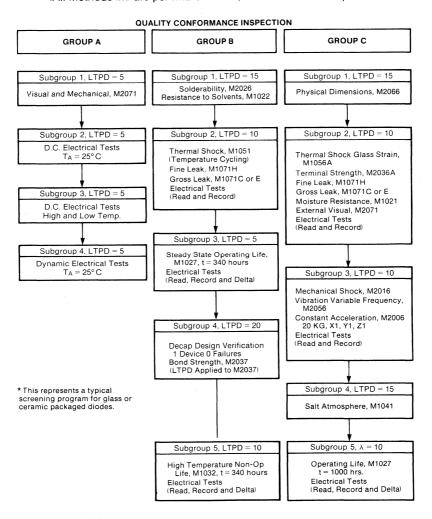
Standard Hi-Rel Programs

Since the advantages of products tested to well established reliability standards can be of significant value to reliability oriented customers, HP makes available a number of products that have been tested to the same reliability level as the JAN type devices, but have HP part numbers and meet HP designated electrical specifications. These are our "TX" products. Typical screening programs are set forth in the Hi-Rel data sheets.

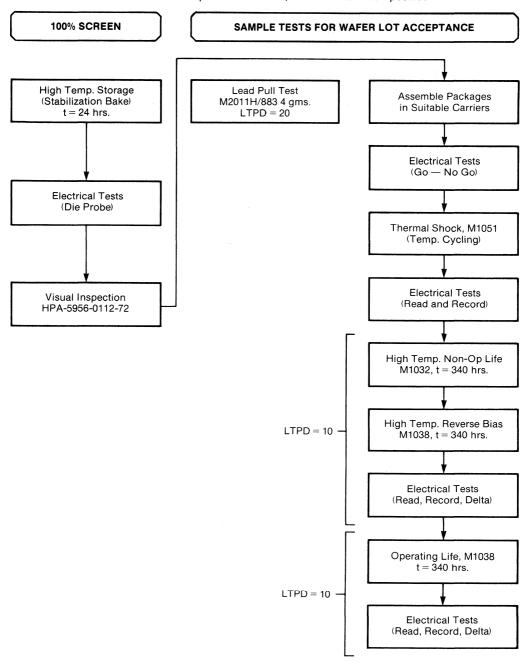
Hewlett-Packard provides standard Hi-Rel programs which are patterned after MIL-S-19500. These programs are designed to:


- 1. Eliminate the costly requirements of generating Hi-Rel specifications.
- 2. Offer improved delivery for these Hi-Rel devices.
- 3. Provide assistance in writing Hi-Rel specifications.

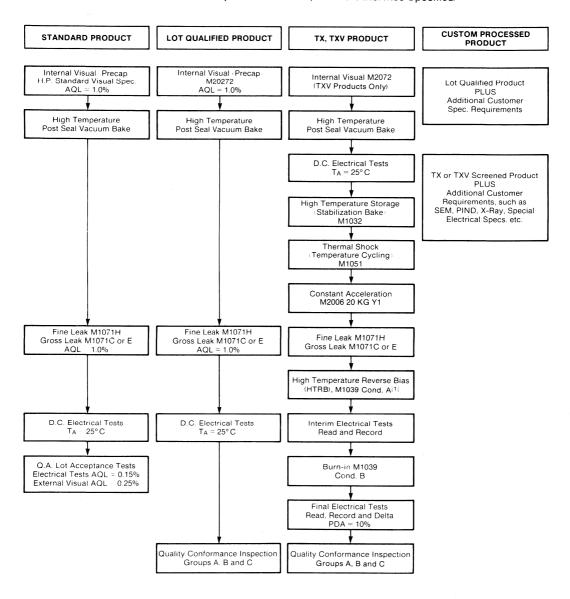
Products available from HP may be classified into four categories:

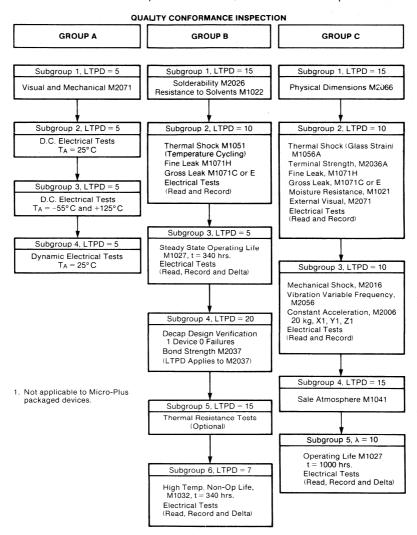

- a. Dice
- b. Beam lead devices
- c. Glass packaged devices
- d. Ceramic packaged devices

Hi-Rel screening requirements vary slightly due to the unique properties of each category. The tables that follow list these screening programs along with the qualification and quality conformance testing performed for each category. Screening programs for each category have been designed to verify the reliability of the end product.


Diode Test and Screening Options (Typical)*


Diode Test and Screening Options (Typical)* (con't)


Hi-Rel Beam Lead Diode Test/Screen Program (Typical)


Hi-Rel Chip Diode Test/Screen Program (Typical)

Transistor Test and Screening Options (Typical)

Transistor Test and Screening Options (Typical) (con't)

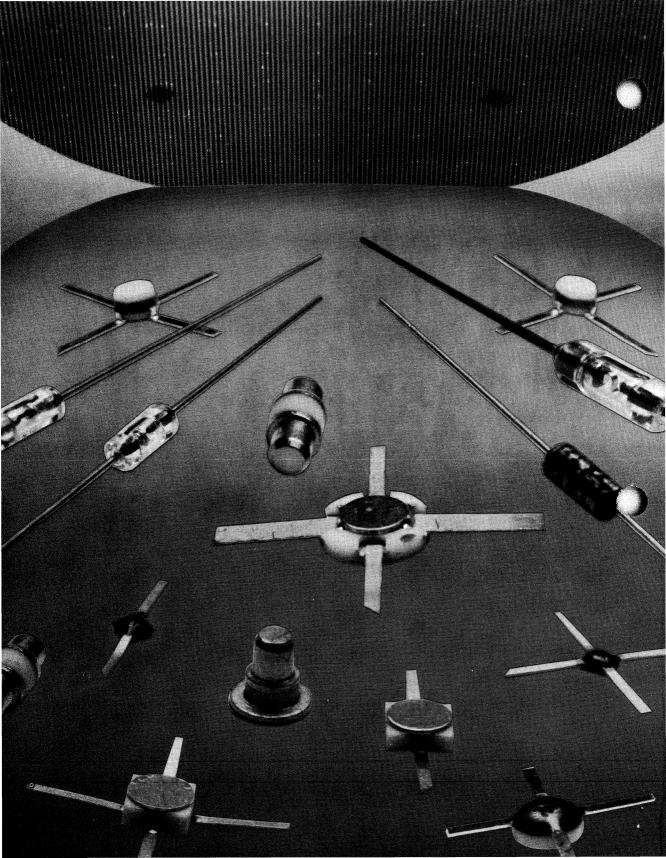
Marking, Packaging, Shipping and Handling

Device and container marking is dependent on the type of device as shown below:

Device		Device	Typical Container/Marking		
Dice		No	one		100 dice per waffle pack. Label on waffle pack.
Beam Lead		No	25 beamleads per gel pack. Label on gel pack.		
Glass Package		DESC			Bulk or corregated insert (10
	JAN	JAN TX	JAN TXV	HP, Hi-Rel	each), packaged in antistatic bag.
	JIN	JXIN	JVIN	ABC	Label on bag.
	ABCD[1]	ABCD[1]	ABCD[1]	DEF[1]	Tape and Reel
	AQIM ^[2]	AQIM ^[2]	AQIM ^[2]	XXX[3]	
Ceramic Package	None on small	packages. Mark	ger packages.	Individual or multiple packaging. Label on packaging container.	

Notes:

- 1. Part Number.
- 2. Manufacturers ID.
- 3. Data Code.


All devices are electrostatic sensitive. Packaging used is antistatic and impregnated with conductive material to provide adequate protection from electrostatic discharge damage. At a receiving station, the parts should be

Label Marking:

Hewlett-Packard Part Number Date Code Lot Number Country of Origin Quantity

treated as ESD sensitive material and appropriate handling procedures must be used to avoid degradation due to electrostatic discharge.

Quality Assurance

Philosophy	16
In-process Control and Reliability Testing	16
Process Controls	16
Life and Environmental Stress Tests	17
Reliability Assessment and Prediction	17
Monitor Program	10

QUALITY ASSURANCE CONCEPTS AND METHODOLOGY

Quality Philosophy

Recognizing the increasing importance of microwave component reliability for the consumer, industrial, and military markets, the Microwave Semiconductor Division (MSD) of Hewlett-Packard has committed itself to achieve error free performance at all levels of manufacturing and to deliver the highest level of product quality and reliability performance. Three basic ingredients are integrated into the manufacture of reliable microwave components:

- The device must be designed with a technical understanding of the user's applications and quality requirements.
- The device must be manufactured with the optimum state-of-the-art technology for the application.
- Controls must be established in the manufacture of the device.

As a major manufacturer of microwave products, MSD produces a broad family of many devices. Since it is not practical, technically necessary, nor cost effective to qualify each of these products via life and environmental testing, the logical approach has been to differentiate assembly/package related failure mechanisms from failure modes associated with the wafer fabrication process. This "die process" and "package product" approach to reliability has been a consideration in the new military standards for microelectronic testing/reliability and is used at MSD with the following definitions:

- Die Process Family consists of devices which have identical wafer processing. This premise recognizes that component geometry and layout of a product will have little impact on reliability because established design rules apply to all products fabricated by the same process.
- Package/Assembly Family are those of like construction and are assembled with identical materials, manufacturing controls and operations.

Component reliability estimation can therefore be achieved with a high confidence level from environmental and life testing data derived from various product families. Accelerated stress testing techniques are continuously employed to obtain

definitive working knowledge of reliability performance, whereby the resulting information is used to predict long-term device reliability for the intended application.

In-process Control and Reliability Testing

The reliability performance of microwave components can be affected by numerous operations associated with device manufacturing; among these being:

- Wafer fabrication process/technology
- · Device design and layout
- Packaging design
- The manufacturing processes
 - Wafer fabrication
 - Package materials
 - Assembly materials and procedures
- · In-process controls
- Final electrical test procedures
- Quality Assurance inspection procedures
- · Post-assembly reliability screening

One of the most important aspects of insuring quality and reliability is through adequate inprocess controls of these operations. Wafer fabrication controls provide the assembly operation with a high quality and reliable chip, while the process controls associated with the assembly operation assure the optimum in package integrity. The main areas of Quality Assurance process controls may be summarized according to the fabrication and assembly operations:

Quality Assurance Process Controls

Wafer Fabrication	Assembly
Particle count, room and hood ambient	Die visual
Temperature/Humidity control	Die shear test
Capacitance vs. Voltage plots	Wire bond pull
Furnace tube cleaning	Pre-seal visual
Deionized water checks	Hermeticity
Metal thickness monitor	Electrical test
Metal SEM monitor	
Inspection of starting material	

Life and Environmental Stress Tests

To ensure the highest quality product commensurate with the intended use of the device, numerous life and environmental tests have been designed to assess device performance. The majority of these tests are designed to simulate more extreme operating conditions than would actually be encountered in most practical applications. This ensures the reliability performance of the device relative to its intended application. Typical device testing at MSD generally comprises the following environmental and life tests:

Life Tests

High Temperature Reverse Bias (HTRB)
Operating Life

High Temperature Operating Life (HTOL)
High Temperature Storage Life (HTSL)

Environmental Tests

Moisture Resistance Hermeticity

Solderability Mechanical Shock

Thermal Shock

Lead Fatigue

Temperature

Vibration Variable Frequency

Cycling

Vibration Fatigue

Power Cycling

Constant Acceleration

Terminal Strength

Salt Atmosphere

Specific methods and conditions of these tests are in compliance with MIL-STD-202, MIL-STD-750, and MIL-STD-883 test specifications, depending upon the nature of the device being tested and its functional classification. For more information on these testing programs please refer to the High Reliability section of this catalog.

Reliability Assessment and Prediction

Numerous concepts and mathematical models have been proposed to assess the reliability performance of semiconductor components. Of these, essentially three fundamental equations are widely used in the industry for reliability assessment and prediction of failure rate:

- The failure rate equation, λ
- The probability of survival, Ps
- The Arrhenius equation for determining the activation energy of thermal processes, Ea

The **Failure Rate Equation** relates to the population of units failed under life testing and the duration of the test. It is defined by the relationship

$$\lambda = \frac{N_F}{N_O}$$

where

 λ = assessed failure rate

N_F = quantity of failures occuring in a time interval t

 N_0 = quantity of acceptable devices at zero hours t = time interval or duration of test

Generally it is more meaningful to discuss failure rates in terms of the Mean Time To Failures or MTTF, which is the reciprocal of the failure rate and expressed as MTTF = $1/\lambda$. It is important to recognize that both λ and MTTF are statistical averages and apply only to the useful life of the product.

The **Probability of Survival** is the likelihood that a particular device will survive for a given period of operating time and may be expressed as:

$$P_S = e^{-\lambda t} = e^{-t/(MTTF)}$$

where

t = operating time of the device

 $\lambda = \text{failure rate} = 1/\text{MTTF}$

The third mathematical relationship of importance to reliability is a form of the **Arrhenius Equation**, which relates the rate of a thermally accelerated process to temperature. Expressed in terms of the failure rate λ and the **Activation Energy** (Ea) for the process takes the form:

$$E_{a} = \frac{kT_{2}T_{1}}{(T_{2}-T_{1})} \text{ In } \frac{\lambda_{2}}{\lambda_{1}}$$

where

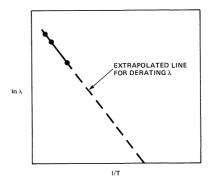
 $E_a = Activation Energy$

k = Boltzmann's Constant (8.63 x 10-5 eV/°K)

 $T_i = Ab$ solute temperatures at which the failure rates λ_i were measured

 λ_i = Failure rate at temperature T_i

From this relationship, the failure rate at some temperature other than the test temperature can be determined provided the activation energy of


the failure mode is known. More important, the activation energy can be determined for various thermally activated processes. This allows the reliability analysts to fingerprint specific failure mechanisms and hence predict the reliability performance of a product as a function of time and temperature. In practice, the failure mechanism of a device is not clearly understood or the activation energy of the processes are not known. Hence the derating of failure rates from accelerated temperature stress testing is usually accomplished by the use of the non-integrated Arrhenius equation:

In
$$\lambda = -\frac{E_a}{kT} + In A$$

where A is a constant.

A plot of $\ \ ln\ \lambda$ vs. T^{-1} will yield a straight line as illustrated, with a slope equal to -Eak-1.

ARRHENIUS PLOT

Extrapolation of this line to the junction temperature (T_J) of the device or ambient temperature (T_A) allows the analytical extraction of the failure rate at the temperature of interest. This procedure of derating λ assumes that the failure rate is a linear function of time at a fixed level of stress.

Reliability Product Monitor Program

The accompanying program matrix has been constructed by the Reliability Group to provide an active monitor on the reliability performance of our products; the intent of the program being:

- To provide a periodic on-going evaluation of our product reliability.
- Maintain a pulse on fabrication and assembly operations.
- Identify, via long-term stress testing, the limitations of our products and thereby provide future direction to engineering design, development, and manufacturing improvements.

Fabrication and assembly variables were considered in the construction of the matrix to assure that these products would best represent all product families and their associated processes.

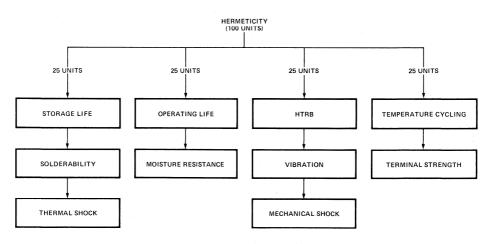
In addition to the following listed products, all new products must pass an extensive reliability test program prior to introduction. This ensures that the tradition of high quality is upheld in all new devices.

Life and Environmental Test Matrix^[1]

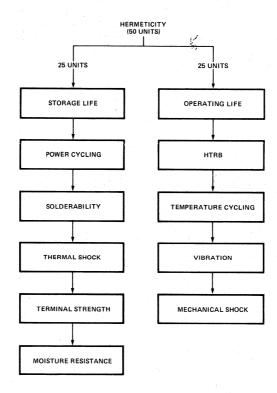
Life/Environmental Stress	Test Method	Stress Condition	Minimum Stress Duration
Operating Life	MIL-STD-750 Method 1026.3	T _J /T _{CH} ≤ 200° C	1000 hours
High Temperature Storage			2000 hours
HTRB	MIL-STD-750 Method 1038/1039	Test Condition A T _A = 200° C	1000 hours
Temperature Cycling	MIL-STD-883 Method 1010	Test Condition D -65° to 200° C	100 cycles
Power Cycling	MIL-STD-750 Method 1036.3	ΔT _C = 100° C	5000 cycles
Thermal Shock	MIL-STD-883 Method 1011	Test Condition D -65° to 200° C	100 cycles
Solderability	MIL-STD-202 Method 208	T _{PbSn} at 230° C	5 second dwell
Hermeticity	MIL-STD-883 Method 1014	Kr-85/dry N ₂ Penetrant dye	N/A
Moisture Resistance	MIL-STD-202 Method 106	65° C/98% R.H.	10 day
Vibration Variable Frequency	MIL-STD-750 Method 2056	100 to 2,000 Hz	4 cycles at Sweep Rate < 4 minutes
Mechanical Shock	MIL-STD-883 Method 2002	Acceleration at 1,500 G's	0.5 msec. pulse duration
Terminal Strength	MIL-STD-750 Method 2036.3	TBA (Package Related)	30 second duration

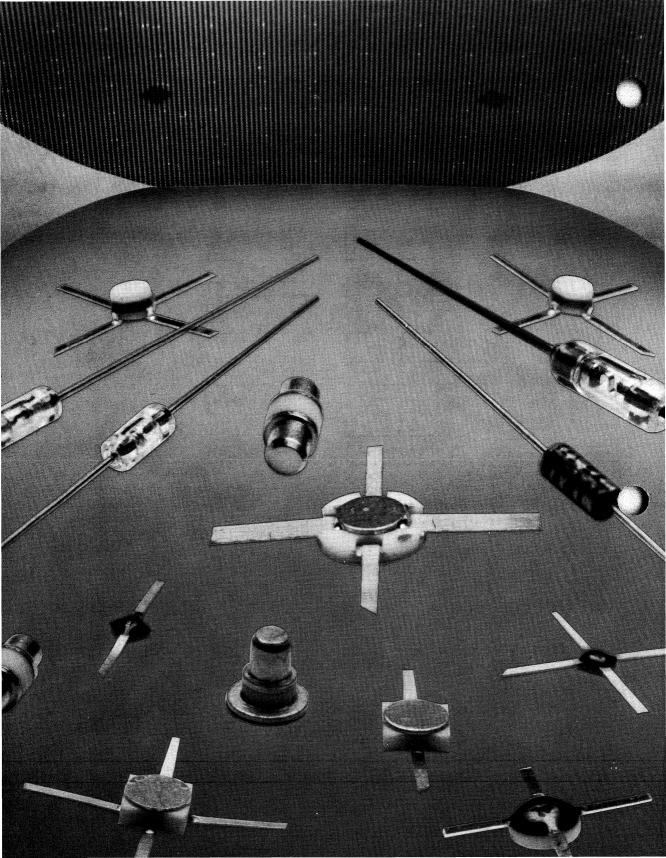
Note:

^{1.} The intent of the monitor program is to maintain a pulse on the reliability performance of products.


Reliability Product Monitor Program

Product Line	Part Number	Quantity	Period of Testing	Life/Environmental Tests
RF Schottky	5082-2800	100	Biannual	Operating Life
	HSCH-1001	100	Biannual	HTRB[1] High Temperature Storage[1]
	5082-2835	100	Biannual	
	5082-2831	100	Biannual	
Microwave	5082-2200/2202	100	Biannual	Temperature Cycling Thermal Shock
Schottky	5082-2301/2302	100	Biannual	Hermeticity[1]
PIN/SRD	V/SRD 5082-3001 100	100	Biannual	Solderability[1] Moisture Resistance Vibration Fatigue Mechanical Shock
• •	5082-3080	100	Biannual	
	HPND-4001/4050	100	Biannual	
-	5082-0180	100	Biannual	
	5082-3188	100	Biannual	Terminal Strength[1] Power Cycling[1]
Bipolar	HXTR-5103	60	Biannual	Moisture Resistance
Transistors		30[2]		Pressure Pot[1]
	HXTR-6103/6104	60	Biannual	Lead Fatigue[1]
		30[2]		Salt Atmosphere
	HXTR-3101/3102	90	Biannual	Solvent Resistance


Notes:


- 1. Where applicable.
- 2. May be electrical rejects.

DIODES

BIPOLAR TRANSISTORS (Method of Sequential Testing)

Silicon Bipolar Transistors

Characteristics and Applications	. 24
Package Selection Guide	
Transistor Selection Guide	28
Alphanumeric Index	31
Chips	. 32
Chip Equivalent Circuits	- 40
Packaged Devices	. 50
Reliability Data	107
Abstracts of Application Notes	
and Bulletins	110

SILICON BIPOLAR TRANSISTORS CHARACTERISTICS AND APPLICATIONS

The Silicon Bipolar transistor is a semiconductor device, with amplification due to current gain. The advantages silicon bipolar transistors have over other transistor types are mature technology (both in the understanding of the device physics and the device design), low cost, and proven reliability. Therefore, silicon bipolar transistors offer designers a familiar, reliable, cost effective solution to many of their design needs.

The Hewlett-Packard silicon bipolar transistors are each characterized using standard D.C. and R.F. specifications. The typical D.C. specifications include pertinent junction parameters (such as junction breakdown voltages and leakage currents) and Beta (hFE). The R.F. and D.C. parameters include the following:

F_{MIN} (Minimum Noise Figure) — The lowest possible noise figure of the transistor when properly biased and matched for low noise operation.

 f_t (Transition frequency, "Gain Bandwidth Product") — f_t is the theoretical frequency at which the common emitter gain $|h_{fe}|$ is unity (0 dB).

MAG (Maximum Available Gain) — MAG is theoretically the highest transducer power gain that the transistor can deliver at a given frequency. It is important to recognize that MAG can only be defined when the Stability Factor, K, is greater than 1.0.

Ga (Noise Figure Gain) — Noise Figure Gain is the transducer gain measured with the same source impedance as that for obtaining the Minimum Noise Figure, F_{MIN}. G_a is usually lower than MAG since the optimum source impedance for F_{MIN} is usually different than for MAG.

G_T (Tuned Gain) — Tuned Gain is transducer power gain measured with the transistor's input and output impedances matched (tuned).

G_{1dB} (Associated 1 dB Compressed Gain) — Gain associated with P_{1dB}. G_{1dB} is 1 dB less than the transistor small signal gain when it is matched for maximum output power.

 $|\mathbf{S_{21E}}|^2$ (Transducer Gain) — The forward transmission gain of a transistor with a 50 Ω source and load.

C_{12E} (Reverse Transfer Capacitance) — The collector-base capacitance of a transistor

measured with the emitter connected to the guard of a four-terminal pair capacitance meter.

F_(50 Ω) (50 Ω Noise Figure) — The noise figure of a transistor with a 50 Ω source impedance.

1'0 (Gamma Optimum) — The source reflection coefficient that yields the lowest possible noise figure of a transistor (FMIN).

IP₃(Third Order Intercept Point) — The intersections of the straight line extensions of the fundamental output and third order intermodulation products of a transistor.

P_{1dB} (Power Output at 1 dB Gain Compression)
— When the input power increases until the small signal tuned gain compresses by 1 dB, the resultant output power is called P_{1dB}.

S-Parameters — S-parameters are four measurable normalized vector quantities that relate to reflection coefficients and gains. The four S-parameters are described as follows; S₁₁, the input reflection coefficient; S₂₁, the forward transmission coefficient (gain); S₁₂, the reverse transmission coefficient (isolation), S₂₂, the output reflection coefficient.

BV_{CBO} (Collector Base Breakdown Voltage with Open Emitter) — DC breakdown voltage, collector to base, with the emitter open circuited (I_E = 0). This is the highest breakdown voltage of the collector-base junction. BV_{CBO} is the highest voltage at which the transistor can be operated without damage in Common Base circuits.

BV_{CEO} (Collector Emitter Breakdown Voltage with Open Base) — DC breakdown voltage, collector to emitter, with the base open circuited (I_B = 0). BV_{CEO} is usually lower (as much as 50%) than BV_{CBO}.

BV_{CES}(Collector Emitter Breakdown Voltage with Base Shorted) — DC breakdown voltage, collector to emitter, with the base short circuited to the emitter (VBF = 0).

BV_{EBO} (Emitter Base Breakdown Voltage) —DC breakdown voltage, emitter to base reverse biased, with open circuited collector ($I_C = 0$).

h_{FE} (Common Emitter Current Gain, Beta) — Common emitter DC current gain, the ratio of the total DC collector current to the total DC base current.

 I_{EBO} (Emitter Base Leakage Current) — DC leakage current, reverse biased emitter base, with collector open ($I_{\text{C}} = 0$).

I_{CBO} (Collector Base Leakage Current) — DC leakage current, reverse biased collector to base, with emitter open circuited (I_E = 0).

 I_{CEO} (Common Emitter Leakage Current with Base Open) — DC leakage current, collector to emitter, with base open circuited ($I_B = 0$).

 I_{CES} (Collector Emitter Leakage Current with Base Shorted) — DC leakage current, reversed biased collector to emitter, with base shorted to emitter ($V_{EB} = 0$).

Ic (MAX) (Absolute Maximum Collector Current)

— Ic (MAX) is the maximum collector current that the transistor can safely withstand for an extended period.

P_T (MAX) (Maximum Power Dissipation) — P_T (MAX) is the maximum total DC and microwave power dissipation the transistor can safely withstand.

T_{J (MAX)} (Maximum Junction Temperature) — The maximum junction temperature at which the reverse biased collector base junction can be maintained without irreversibly damaging the transistor.

Included in the data sheets are the "Absolute Maximum Ratings" which are those conditions that, when exceeded, will cause permanent damage to the device. These are the standard maximum ratings used for derating purposes.

The Hewlett-Packard Silicon Bipolar product line has six basic transistor types; the HXTR-2000 series, the HXTR-3000 series, the HXTR-4101, the HXTR-5000 series, the HXTR-6000 series and the new HXTR-7000 series.

The HXTR-2000 Series

The HXTR-2000 series is designed for general gain amplifier stage requirements. The HXTR-2000 series devices have $2\mu m$ emitter widths, and 450 mW of total device dissipation. These transistors have high maximum available gain (typically 17.5 dB at 2 GHz), high linear output power (P1dB typically 20 dBm at 2 GHz) with a small degradation in noise figure (typically 2.2 dB at 2 GHz). The HXTR-2000 series is offered in two rugged hermetic packages, the HPAC-100 and the HPAC-70GT. The HXTR-2101 is packaged in the HPAC-100, and the HXTR-2102 is packaged in the HPAC-70GT. The HXTR-

2001, the transistor chip, is also available for hybrid applications. All of the HXTR-2000 series devices are characterized from 100 MHz to 6.5 GHz

The HXTR-3000 Series

The HXTR-3000 series devices are designed for high volume, low cost applications in the UHF range. The HXTR-3000 series consists of two basic chips; the HXTR-3001 and the HXTR-3002. The HXTR-3001 has high gain (typically 16 dB at 2 GHz), and low noise figure (typically 2.2 dB at 2 GHz). The HXTR-3001 is offered in the HPAC-100X (a low cost, rugged metal/ceramic package) as the HXTR-3101 and the HXTR-3103. The HXTR-3002 has high linear output power (typically 21 dBm at 1000 MHz) and high associated 1 dB compressed gain (typically 11.5 dB at 1000 MHz). The HXTR-3002 is also offered in the HPAC-100X. as the HXTR-3102 and the HXTR-3104. Both chip products, the HXTR-3001 and the HXTR-3102 are available for hybrid applications. All of the HXTR-3000 series devices are characterized from 100 MHz to 6 GHz.

The HXTR-4101

The HXTR-4101 is designed and characterized for common-base oscillator transistor applications. The device uses the HXTR-2001 chip packaged in the HPAC-100. The HXTR-4101 has typical output power (oscillator power) of 20 dBm at 4.3 GHz. This device is characterized from 1 GHz to 12 GHz.

The HXTR-5000 Series

The HXTR-5000 series devices are designed for those applications where high linear output is required. The HXTR-5000 series consists of two basic transistor chips, the HXTR-5001 and the HXTR-5002. Both transistor chips have 2 μ m emitter widths and Ta₂N ballast resistors. The HXTR-5001 has a total device dissipation of 700 mW. while the HXTR-5002 has a device dissipation of 2.7 W. The HXTR-5001 has higher linear output power than the HXTR-2000 series (P_{1dB} typically 23 dBm at 2 GHz), and high associated 1 dB compressed gain (typically 13.5 dB of 2 GHz). The HXTR-5001 is offered in the HPAC-100 and the HPAC-200. The HXTR-5101 is in the HPAC-100, and the HXTR-5103 is in the HPAC-200. The HXTR-5002 has the highest linear output power of the transistor product line (typically 29 dBm at 2 GHz) and high associated 1 dB compressed gain (typically 12.5 dB gain at 2 GHz). The HXTR-5002 devices are offered in the hermetic packages HPAC-200 GB/GT and the HPAC-200. The HXTR-5102 is packaged in the HPAC-200 GB/GT, and the HXTR-5104 is packaged in the HPAC-200. Both chip transistors, the HXTR-5001 and HXTR-5002, are available for hybrid applications. All the HXTR-5000 series devices are characterized from 100 MHz to 6 GHz.

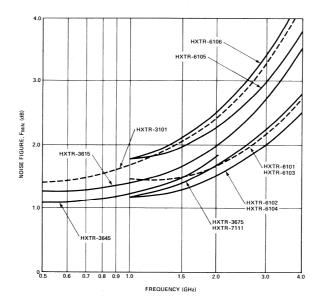
The HXTR-6000 Series

The HXTR-6000 series devices are designed for those applications where low noise performance is a premium. These devices stem from two basic transistor chips, the HXTR-6001 and the HXTR-2001. The transistors using the HXTR-6001 have the lowest noise figure and the highest associated gain. The HXTR-6001 transistor has a 1 μ m emitter width, a typical noise figure of 1.7 dB (at 2 GHz) with 13 dB of associated gain, and 150 mW of total device dissipation. The HXTR-6001 transistors are offered in the HPAC-70GT and the HPAC-100. The HXTR-6101 and the HXTR-6102 (low noise selection of the HXTR-6103 and the HXTR-

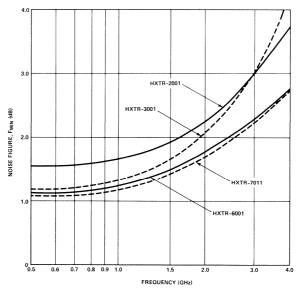
6104 (low noise selection of the HXTR-6103) are in the HPAC-100. The chip, the HXTR-6001, is available for hybrid applications. The HXTR-6105 and the HXTR-6106 use the HXTR-2001 chip. The HXTR-6105 is packaged in the HPAC-100, and the HXTR-6106 is packaged in the HPAC-70GT. The HXTR-6105 and the HXTR-6106 are low noise selections of the HXTR-2101 and the HXTR-2102 respectively. These devices are all characterized from 100 MHz to 6 GHz, or higher.

The HXTR-7000 Series

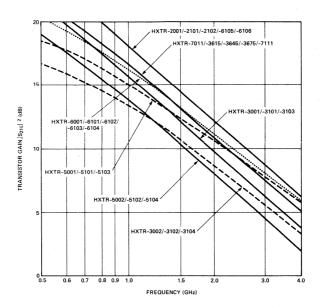
The HXTR-7000 series devices are designed for those applications where low noise and high linear power output performances are required. The chip, the HXTR-7011, has $0.6~\mu m$ emitter widths, a typical noise figure of 1.7 dB with an associated gain 13 dB at 2 GHz and 600 mW total device power dissipation. The HXTR-7011 is offered in two rugged hermetic packages: the high volume low cost HPAC-100X (HXTR-3615, HXTR-3645, HXTR-3675) and the HPAC-100 (HXTR-7111). All the HXTR-7000 series devices are characterized from 100 MHz to 6000 MHz.

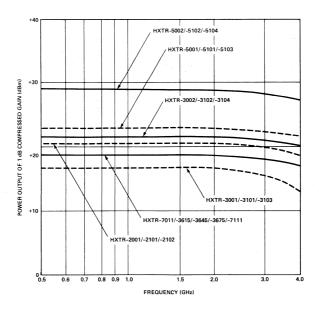

Bipolar Transistors

SILICON BIPOLAR TRANSISTOR PACKAGE SELECTION GUIDE


			High Pe	erformance				Low Cost	
	Lo No		Ger Pur	eral oose	Lin Pov		Low Noise	General Purpose	Linear Power
	4 GHz (HXTR-)	2 GHz (HXTR-)	4 GHz (HXTR-)	2 GHz (HXTR-)	4 GHz (HXTR-)	2 GHz (HXTR-)	1 GHz (HXTR-)	1 GHz (HXTR-)	1 GHz (HXTR-)
	6001 7011	6001 7011	2001	2001 3001	5001 5002	3002 5001 5002	7011	3001 7011	3002 7011
CHIP	-								
	3675	3645	3675	3103 3645		3104	3615 3645	3101 3615	3102 3104 3615
HPAC-100X			0.100						
	6101	6102	2102	2102 6106					
HPAC-70GT									
HPAC-100	7111	6103 6104	2101 6105	2101	5101	5101			
П					5103	5103			
						5104			
HPAC-200				-					
					5102	5102			
HPAC-200GB/GT					l	L			<u> </u>

BIPOLAR TRANSISTOR SELECTION GUIDE


TYPICAL NOISE FIGURE vs. FREQUENCY (PACKAGED TRANSISTOR)


TYPICAL NOISE FIGURE vs. FREQUENCY (CHIP TRANSISTORS)

TYPICAL TRANSISTOR GAIN vs. FREQUENCY

TYPICAL P_{1dB} vs. FREQUENCY

PART NUMBER SELECTION GUIDE

			High Performance	e		
	Part Number HXTR-	Frequency	Typical Noise Figure F _{MIN} (dB)	Typical Associated Gain G _a (dB)	Package HPAC-	Page Number
	3675 6001	4 GHz 4 GHz	2.8 2.7	8.3 9.0	100X Chip	69 44
Low Noise	6101 (2N6617)	4 GHz	2.8	9.0	100	86
≥	7011	4 GHz	2.8	8.2	Chip	46
3	7111	4 GHz	2.8	8.7	100	104
د ا	3645	2 GHz	1.7	13.0	100X	66
	6102 (2N6742)	2 GHz	1.6	13.5	100	89
	6103 (2N6618)	2 GHz	1.8	12.0	100	92
	6104 (2N6743)	2 GHz	1.5	12.5	100	95
	7011	2 GHz	1.7	13.0	Chip	46
	Part Number		Typical	Typical Noise	Package	Page
	HXTR-	Frequency	S _{21E} ² (dB)	Figure F _{MIN} (dB)	HPAC-	Number
g g	2001	4 GHz	6.0	3.8	Chip	32
General Purpose	2102	4 GHz	5.3	4.2	70 GT	52
5	3675	4 GHz	4.4	2.8	100X	69
≗	6105	4 GHz	4.6	3.8	100	98
E E	2001	2 GHz	12.0	3.2	Chip	32
ਵ	2101 (2N6679)	2 GHz	11.0	2.7	100	50
Ğ	3001	2 GHz	9.8	2.2	Chip	34
	3103 (2N6838)	2 GHz	9.4	2.5	100X	58
	3645	2 GHz	9.8	1.7	100X	66
	6106	2 GHz	10.5	2.5	70 GT	101
	Part Number	_	Typical	Typical	Package	Page
	HXTR-	Frequency	_{1dB} (dBm)	G _{1dB} (dB)	HPAC-	Number
	5001	4 GHz	22.0	8.0	Chip	38
_	5002 5101	4 GHz 4 GHz	27.5	7.5	Chip	41
§	5101		22.0	7.5	100	74
Ô	3002	4 GHz	27.5	7.0	200 GB/GT	77
 	5002	2 GHz 2 GHz	21.0 23.0	13.5	Chip	36
Linear Power	5001	2 GHz 2 GHz	23.0	13.5	Chip	38
5	3104 (2N6839)	2 GHz	29.0	12.5 13.0	Chip 100X	41
	5104 (2106639)	2 GHz 2 GHz	21.0	13.0	100X	61
	5103	2 GHz	23.0	13.0	200	74
	5103	2 GHz 2 GHz	29.0	9.0	200	80 83
	L 3107	2 902	29.0	J 3.0	200	83

			Low Cost			
Noise	Part Number HXTR-	Frequency	Typical Noise Figure F _{MIN} (dB)	Typical Associated Gain G _a (dB)	Package HPAC-	Page Number
Low N	7011 3615	1 GHz 1 GHz	1.2 1.4	18.0 16.6	Chip 100X	46 63
-	3645 Part Number HXTR-	1 GHz Frequency	Typical	17.5 Typical Noise	100X Package	66 Page
General Purpose	3001 3101 3103 3615 7011	1 GHz 1 GHz 1 GHz 1 GHz 1 GHz	S _{21E} ² (dB) 15.7 15.0 15.0 15.8 16.5	1.5 1.8 1.7 1.4 1.2	Chip 100X 100X 100X Chip	34 54 58 63 46
ower	Part Number HXTR-	Frequency	Typical P _{1dB} (dBm)	Typical G _{1dB} (dB)	Package HPAC-	Page Number
Linear Pow	3002 3102 3104 3615 7011	1 GHz 1 GHz 1 GHz 1 GHz 1 GHz	22.0 21.0 21.0 19.0 21.0	18.0 15.0 16.0 19.0 19.0	Chip 100X 100X 100X Chip	36 56 61 63 46
ance	Part Number HXTR-	Frequency	Typical F _{MIN} (dB)	Typical P1dB (dBm)	Package HPAC-	Page Number
High Performance	3645 3675 7011	2 GHz 4 GHz 4 GHz	1.7 2.8 1.7	19.0 17.5 19.0	100X 100X Chip	66 69 46

		Oscillator		
Part Number HXTR-	Frequency	Typical P _{OSC} (dBm)	Package HPAC-	Page Number
4101	4.3 GHz	20.5	100	72

BIPOLAR TRANSISTOR ALPHANUMERIC INDEX

		Page
Part No.	Description	Numbe
HXTR-2001 HXTR-2101 HXTR-2102 HXTR-3001 HXTR-3002	General Purpose Transistor Chip General Purpose Transistor (2N6679) General Purpose Transistor General Purpose Transistor Chip Linear Power Transistor Chip	50 52 34
HXTR-3101 HXTR-3102 HXTR-3103 HXTR-3104 HXTR-3615	Low Cost General Purpose Transistor Low Cost Linear Power Transistor General Purpose Transistor (2N6838) Linear Power Transistor (2N6839) Low Cost Low Noise Transistor	56 58
HXTR-3645 HXTR-3675 HXTR-4101 HXTR-5001 HXTR-5002	Low Cost High Performance Transistor Low Cost High Performance Transistor Oscillator Transistor Linear Power Transistor Chip Linear Power Transistor Chip	69 72 38
HXTR-5101 HXTR-5102 HXTR-5103 HXTR-5104 HXTR-6001	Linear Power Transistor (2N6701) Linear Power Transistor Linear Power Transistor (2N6741) Linear Power Transistor Low Noise Transistor Chip	77 80 83
HXTR-6101 HXTR-6102 HXTR-6103 HXTR-6104 HXTR-6105	Low Noise Transistor (2N6617) Low Noise Transistor (2N6742) Low Noise Transistor (2N6618) Low Noise Transistor (2N6743) General Purpose Transistor	89 92 95
HXTR-6106 HXTR-7011 HXTR-7111	General Purpose Transistor Low Noise Transistor Chip Low Noise High Performance Transistor	46

GENERAL PURPOSE TRANSISTOR CHIP

HXTR-2001

Features

HIGH GAIN 17.5 dB Typical at 2 GHz

HIGH OUTPUT POWER
20.0 dBm P_{1dB} Typical at 2 GHz

LOW NOISE FIGURE
3.8 dB Typical at 4 GHz

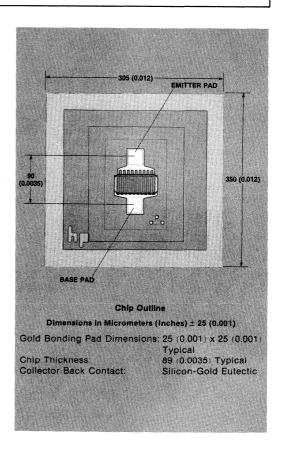
WIDE DYNAMIC RANGE

Description/Applications

The HXTR-2001 is an NPN silicon bipolar transistor chip designed for use in hybrid applications requiring superior noise figure and associated gain performance at VHF, UHF, and microwave frequencies. Use of ion implantation and self alignment techniques in its fabrication produce superior device uniformities and performance.

The HXTR-2001 features a metallization system that provides consistent and reliable performance at rated dissipation under high temperature operation. The HXTR-2001 also is provided with a dielectric scratch protection over its active area.

Absolute Maximum Ratings*


 $(T_A = 25^{\circ} C)$

Symbol	Parameter	Limit
Vcвo	Collector to Base Voltage	30V
VCEO	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.5V
lo	DC Collector Current	70 mA
Pt	Total Device Dissipation	900 mW
Tj	Junction Temperature	300°C
Tsrg	Storage Temperature	-65° C to
		300°C

*Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- Power dissipation derating should include a Θ_{JB} (Junction-to-Back contact thermal resistance) of 125°C/W.
 Total Θ_{JA} (Junction-to-Ambient) will be dependent upon the heat sinking provided in the individual application.
- A MTTF of 1.0 x 107 hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Recommended Die Attach and Bonding Procedures

Eutectic Die Attach at a stage temperature of $410 \pm 10^{\circ}$ C under an N₂ ambient. Chip should be lightly scrubbed using a tweezer and eutectic should flow within five seconds.

Thermocompression Wire Bond at a stage temperature of $310\pm10^{\circ}$ C, using a tip force of 30 ± 5 grams with 0.7 or 1.0 mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not recommended.)

Electrical Specifications at T_A=25°C

Symbol	Parameters and Test Conditions		MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
BVces	Collector-Emitter Breakdown Voltage at Ic=100,	ıA.	3011.1*	٧	30		
ICEO	Collector-Emitter Leakage Current at V _{CE} =15V		3041.1**	nA			500
Ісво	Collector Cutoff Current at V _{CB} =15V		3036.1**	nA			100
hre	Forward Current Transfer Ratio at VcE=15V, Ic=	15mA	3076.1*		50	120	220
MAG	Maximum Available Gain	f=2GHz		dB		17.5	
	Vcc = 15V, Ic = 25 mA	4GHz		UB		11.5	
PidB	Power Output at 1dB Gain Compression	f=2GHz		dBm		20.0	
	V _{CE} = 15V. I _C = 25 mA	4GHz		abiii		18.5	
FMIN	Minimum Noise Figure	f=2.0GHz				2.3	
	V _{CE} = 15V, I _C = 15 mA	4GHz	3246.1	dB		3.8	

^{*300}µs wide pulse measurement <2% duty cycle. **Measured unde

^{**}Measured under low ambient light conditions.

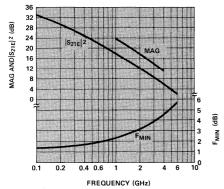


Figure 1. Typical MAG, $|S_{21}E|^2$, and Noise Figure (FMIN) vs. Frequency at VcE = 15 V, IC = 25 mA.

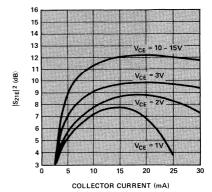


Figure 2. Typical $|S_{21E}|^2$ vs. Current at 2 GHz.

Typical S-Parameters*VCE = 15V, IC = 25mA

	S	11		S ₂₁			S ₁₂		S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.57	-88	33.3	46.2	144	-42	0.008	58	0.85	-20
200	0.68	-124	30.2	32.5	123	-39	0.011	43	0.67	-26
300	0.72	-141	27.6	23.9	113	-38	0.013	37	0.56	-26
400	0.74	-150	25.4	18.7	106	-37	0.014	35	0.51	-24
500	0.75	-156	23.7	15.3	102	-37	0.014	35	0.48	-22
600	0.76	-160	22.2	12.9	99	-36	0.015	36	0.46	-21
700	0.76	-163	20.8	11.0	97	-36	0.015	37	0.45	-20
800	0.76	-165	19.9	9.8	95	-36	0.016	38	0.44	-19
900	0.76	-167	18.8	8.7	93	-36	0.016	40	0.44	-18
1000	0.76	-168	18.0	7.9	91	-35	0.017	42	0.44	-18
1500	0.77	-172	14.5	5.3	85	-34	0.021	49	0.43	-18
2000	0.77	-175	12.0	4.0	81	-32	0.025	54	0.43	-20
2500	0.77	-176	10.1	3.2	77	-31	0.029	58	0.43	-23
3000	0.77	-177	8.6	2.7	73	-29	0.034	60	0.43	-26
3500	0.77	-178	7.2	2.3	69	-28	0.038	61	0.44	-29
4000	0.76	-179	6.0	2.0	66	-27	0.043	62	0.44	-32
4500	0.76	-179	5.1	1.8	63	-26	0.048	62	0.45	-35
5000	0.76	-179	4.1	1.6	59	-26	0.052	62	0.45	-38
5500	0.76	-180	3.5	1.5	56	-25	0.057	62	0.46	-41
6000	0.76	-180	2.9	1.4	53	-24	0.062	61	0.47	-44

^{*}Values do not include any parasitic bonding inductances and were generated by use of a computer model.

GENERAL PURPOSE TRANSISTOR CHIP

HXTR-3001

Features

HIGH GAIN
16 dB Typical at 2 GHz

HIGH OUTPUT POWER
21.0 dBm P_{1dB} Typical at 1 GHz

LOW NOISE FIGURE
1.5 dB Typical F_{MIN} at 1000 MHz

WIDE DYNAMIC RANGE

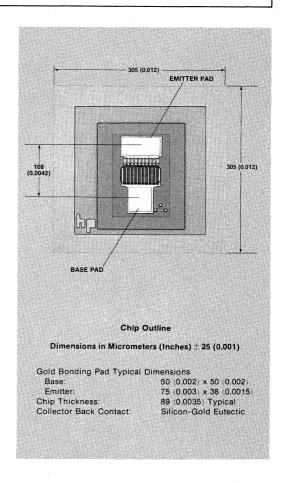
LARGE GOLD BONDING PADS

Description/Applications

The HXTR-3001 is an NPN silicon bipolar transistor chip designed for use in hybrid applications requiring superior noise figure and associated gain performance at VHF, UHF, and microwave frequencies. Use of ion implantation and self alignment techniques in its fabrication produce superior device uniformities and performance.

The HXTR-3001 features a metallization system that provides consistent and reliable performance at rated dissipation under high temperature operation. The HXTR-3001 also is provided with a dielectric scratch protection over its active area and large gold bonding pads for ease of use in most hybrid applications.

Absolute Maximum Ratings*


 $(T_A = 25^{\circ} C)$

Symbol	Parameter	Limit
Vcso	Collector to Base Voltage	30V
VCEO	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.5V
lc	DC Collector Current	70 mA
Pt	Total Device Dissipation	900 mW
TJ	Junction Temperature	300° C
TstG	Storage Temperature	-65° C to
		300° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- Power dissipation derating should include a Θ_{JB} (Junction-to-Back contact thermal resistance) of 125°C/W.
 Total Θ_{JA} (Junction-to-Ambient) will be dependent upon the heat sinking provided in the individual application.
- A MTTF of 1.0 x 107 hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Recommended Die Attach and Bonding Procedures

Eutectic Die Attach at a stage temperature of $410 \pm 10^{\circ}$ C under an N_2 ambient. Chip should be lightly scrubbed using a tweezer and eutectic should flow within five seconds.

Thermocompression Wire Bond at a stage temperature of $310\pm10^{\circ}$ C, using a tip force of 30 ± 5 grams with 0.7 or 1.0 mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not recommended.)

Electrical Specifications at T_A=25°C

Symbol	Parameters and Test Conditions	MIL-STD-750 Test Method	Units	Min.	Тур,	Max.
BVces	Collector-Emitter Breakdown Voltage at I _C = 100μA	3011.1*	٧	30		
ICEO	Collector-Emitter Leakage Current at V _{CE} = 15V	3041.1**	nA			500
1сво -	Collector Cutoff Current at V _{CB} = 15V	3036.1**	nA			100
hre	Forward Current Transfer Ratio at V _{CE} = 15V, I _C = 15mA	3076.1*		50	120	220
MAG	Maximum Available Gain $f = 2000 \; \text{MHz}$ $V_{\text{CE}} = 15 \text{V, } I_{\text{C}} = 15 \; \text{mA}$		dB		16.0	
PtaB	Power Output at 1 dB Gain Compression f = 1000 MHz VcE=15V, Ic=25 mA		dBm		21.0 19.0	
FMIN	Minimum Noise Figure f = 500 MHz 1000 MHz VCE=10V, IC=7 mA 2000 MHz	3246.1	dB		1.2 1.5 2.2	

^{*300}µs wide pulse measurement <2% duty cycle.

[&]quot;Measured under low ambient light conditions.

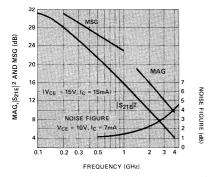


Figure 1. Typical MAG, $|S_{21E}|^2$, Maximum Stable Gain (MSG), and Noise Figure (FMIN) vs. Frequency.

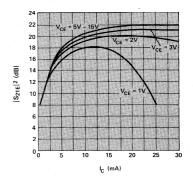


Figure 2. Typical |S_{21E}|² vs. Current of 500 GHz.

Typical S-Parameters* VCE = 15V. IC = 15 mA

	s	11		S ₂₁			S ₁₂		S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
. 100	0.651	-74	30.6	34.04	146	-37.2	0.014	59	0.851	-23
200	0.714	-113	27.8	24.66	125	-33.9	0.020	43	0.659	-33
300	0.741	-132	25.3	18.41	114	-32.9	0.023	36	0.539	-36
400	0.754	-143	23.2	14.46	107	-32.3	0.024	33	0.471	-36
500	0.761	-151	21.5	11.84	102	-32.0	0.025	31	0.429	-35
600	0.765	-155	20.0	10.00	98	-31.7	0.026	32	0,405	-34
700	0.767	-159	18.7	8.63	95	-31.5	0.027	32	0.389	-34
800	0.768	-162	17.6	7.59	93	-31.2	0.028	33	0.377	-34
900	0.769	-164	16.6	6.77	91	-31.0	0.028	34	0.370	-34
1000	0.770	-166	15.7	6.11	89	-30.7	0.029	35	0.365	-34
1500	0.770	-171	12.2	4.10	81	-29.3	0.034	41	0.358	-38
2000	0.769	-174	9.8	3.06	74	-28.0	0.040	44	0.364	-43
2500	0.766	-176	7.8	2.46	69	-26.8	0.046	47	0.375	-49
3000	0.763	-177	6.2	2.05	63	-25.7	0.052	48	0.389	-55
3500	0.760	-178	4.9	1.75	58	-24.7	0.058	48	0.405	-61
4000	0.756	-179	3.7	1.53	53	-23.8	0.064	48	0.423	-66

^{*}Values do not include any parasitic bonding inductances and were generated by use of a computer model.

LINEAR POWER TRANSISTOR CHIP

HXTR-3002

Features

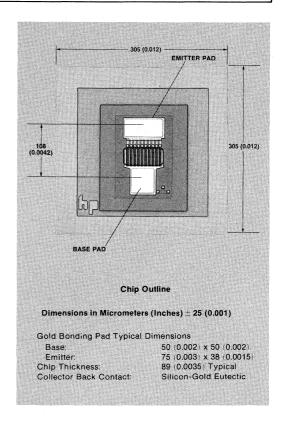
HIGH OUTPUT POWER
22 dBm Typical P_{1dB} at 1 GHz
HIGH P_{1dB} GAIN
18.0 dB Typical G_{1dB} at 1 GHz
HIGH |S_{21E}|² GAIN
16.5 dB Typical at 500 MHz
LARGE GOLD BONDING PADS

Description/Applications

The HXTR-3002 is an NPN silicon bipolar transistor chip designed for use in hybrid applications requiring superior noise figure and associated gain performance at VHF, UHF, and microwave frequencies. Use of ion implantation and self alignment techniques in its fabrication produce superior device uniformities and performance.

HXTR-3002 features a metallization system that provides consistent and reliable performance at rated dissipation under high temperature operation. The HXTR-3002 also is provided with a dielectric scratch proteciton over its active area and large gold bonding pads for ease of use in most hybrid applications.

Absolute Maximum Ratings*


 $(T_A = 25^{\circ}C)$

Symbol	Parameter	Limit
Vcво	Collector to Base Voltage	45V
VCEO	Collector to Emitter Voltage	27V
VEBO	Emitter to Base Voltage	4.0V
Ic	DC Collector Current	100 mA
PT	Total Device Dissipation	1.4W
Tu	Junction Temperature	300°C
TSTG	Storage Temperature	-65°C to

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes

- Power dissipation derating should include a Θ_{JB} (Junction-to-Back contact thermal resistance) of 125°C/W.
 Total Θ_{JA} (Junction-to-Ambient) will be dependent upon the heat sinking provided in the individual application.
- A MTTF of 3.5 x 10⁶ hours will be met or exceeded when the junction temperature is maintained under T_J = 125°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Recommended Die Attach and Bonding Procedures

Eutectic Die Attach at a stage temperature of $410 \pm 10^{\circ}$ C under an N₂ ambient. Chip should be lightly scrubbed using a tweezer and eutectic should flow within five seconds.

Thermocompression Wire Bond at a stage temperature of $310\pm10^{\circ}$ C, using a tip force of 30 ± 5 grams with 0.7 or 1.0 mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not recommended.)

Electrical Specifications at T_A = 25°C

Symbol	Parameters and Test Conditions		Test MIL-STD-750	Units	Min.	Тур.	Max.
ВУсво	Gollector-Base Breakdown Voltage at IC = 3 mA		3001.1*	٧	40		
BVCEO	Collector-Emitter Breakdown Voltage at Ic = 15 n	nA	3011.1"	٧	24		
BVEBO	Emitter-Base Breakdown Voltage at IB = 30 µA		3026.1*	٧	3.3		
lebo -	Emitter-Base Leakage Current at VEB = 2 V		3061.1*	μА			2
ICES	Collector-Emitter Leakage Current at Voe = 32 V		3041.1**	nA			200
ICBO	Collector-Base Leakage Current at Vcs = 20 V		3036.1**	nΑ			100
hre	Forward Current Transfer Ratio at VCE = 18 V, IC	= 30 mA	3076.1*		15	40	75
PidB	Power Output at 1 dB Gain Compression	f = 1000 MHz		dBm		22.0	
G _{1dB}	Associated 1 dB Compressed Gain V _{CE} = 18 V, I _C = 30 mA	f = 1000 MHz		dΒ		18.0	
IS21EI ²	Transducer Gain VCE = 18 V, IC = 30 mA	f = 500 MHz 1000 MHz		dB		16.5 13.6	

^{*300} µs wide pulse measurement at ≤2% duty cycle.

^{**}Measured under low ambient light conditions.

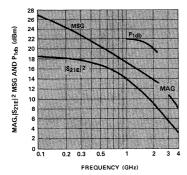


Figure 1. Typical MAG, $|S_{21E}|^2$, Maximum Stable Gain (MSG) and Power Output at 1 dB Gain Compression (P_{1dB}) vs. Frequency, $V_{CE} = 18 \text{ V}$, $I_{C} = 30 \text{ mA}$.

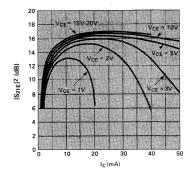


Figure 2. Typical $|S_{21}E|^2$ vs. Current at 500 MHz

Typical S-Parameters* VCE = 18V, IC = 30 mA

	Sti			S ₂₁			S ₁₂		S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang
100	0.658	-17	18.5	8.44	170	-35.9	0.016	82	0.991	-7
200	0.656	-32	18.3	8.18	161	-30.1	0.031	75	0.965	-14
300	0.652	-47	17.8	7.79	153	-27.0	0.045	68	0.926	-20
400	0.648	-60	17.3	7.33	145	-25.0	0.056	62	0.881	-25
500	0.644	-72	16.7	6.85	138	-23.7	0.066	56	0.833	-29
600	0.641	-82	16.1	6.37	132	-22.7	0.073	52	0.787	-33
700	0.637	-91	15.4	5.91	126	-22.0	0.080	48	0.744	-36
800	0.634	-99	14.8	5.49	121	-21.5	0.085	45	0.706	-39
900	0.632	-105	14.2	5.11	117	-21.0	0.089	42	0.671	-41
1000	0.629	-111	13.6	4.76	113	+20.7	0.092	39	0.641	-43
1500	0.623	-131	10.9	3.50	98	-19.7	0.103	32	0.541	-50
2000	0.618	-143	8.8	2.74	88	-19.2	0.110	29	0.492	-54
2500	0.614	-151	7.0	2.24	79	-18.8	0.115	28	0.469	-58
3000	0.611	-156	5.6	1.90	72	-18.4	0.120	27	0.461	-62
3500	0.608	-160	4.3	1.65	65	-18.1	0.125	27	0.460	-66
4000	0.604	-163	3.3	1.46	59	-17.7	0.130	27	0.465	-70

^{*}Values do not include any parasitic bonding inductances and were generated by use of a computer model.

LINEAR POWER TRANSISTOR CHIP

HXTR-5001

Features

HIGH OUTPUT POWER

23 dBm Typical P_{1dB} at 2 GHz
22 dBm Typical P_{1dB} at 4 GHz

HIGH P_{1dB} GAIN 13.5 dB Typical G_{1dB} at 2 GHz 8.0 dB Typical G_{1dB} at 4 GHz

HIGH POWER-ADDED EFFICIENCY

Description/Applications

The HXTR-5001 is an NPN silicon bipolar transistor chip designed for use in hybrid applications requiring superior noise figure and associated gain performance at VHF, UHF, and microwave frequencies. Use of ion implantation and self alignment techniques in its fabrication produce superior device uniformities and performance.

The HXTR-5001 features a metallization system that provides consistent and reliable performance at rated dissipation under high temperature operation. The HXTR-5001 also is provided with a dielectric scratch protection over its active area.

Absolute Maximum Ratings*


 $(T_A = 25^{\circ} C)$

Symbol	Parameter	Limit
Vcво	Collector to Base Voltage	45V
VCEO	Collector to Emitter Voltage	27V
VEBO	Emitter to Base Voltage	4.0V
Ic	DC Collector Current	100 mA
Pt	Total Device Dissipation	1.4W
TJ	Junction Temperature	300°C
TstG	Storage Temperature	-65° C to
-		300° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- Power dissipation derating should include a θ_{JB} (Junction-to-Back contact thermal resistance) of 125°C/W.
 Total θ_{JA} (Junction-to-Ambient) will be dependent upon the heat sinking provided in the individual application.
- 2. A MTTF of 3.5×10^6 hours will be met or exceeded when the junction temperature is maintained under $T_J = 125^\circ$ C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Recommended Die Attach and Bonding Procedures

Eutectic Die Attach at a stage temperature of $410 \pm 10^{\circ}$ C under an N_2 ambient. Chip should be lightly scrubbed using a tweezer and eutectic should flow within five seconds.

Thermocompression Wire Bond at a stage temperature of $310 \pm 10^{\circ}$ C, using a tip force of 30 ± 5 grams with 0.7 or 1.0 mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not recommended.)

Electrical Specifications at T_A =25°C

Symbol	Parameters and Test Conditions		Test MIL-STD-750	Units	Min.	Тур.	Max.
BVcso	Collector-Base Breakdown Voltage at I _C = 3 mA		3001.11	٧	40		
BVcEo	Collector-Emitter Breakdown Voltage at Ic = 15 m	Α	3011.1*	٧	24		
BVEBO	Emitter-Base Breakdown Voltage at I _B = 30 μA		3026.1*	- V	3.3		
lebo	ollector-Emitter Breakdown Voltage at I _C = 15 mA mitter-Base Breakdown Voltage at I _B = 30 µA mitter-Base Leakage Current at V _{EB} = 2 V ollector-Emitter Leakage Current at V _{CE} = 32 V ollector-Base Leakage Current at V _{CE} = 20 V orward Current Transfer Ratio at V _{CE} = 18 V, I _C = 30 mA ower Output at 1 dB Gain Compression $f = 2 \text{ GHz} $ 4 GHz		3061.1	μΑ			2
Ices	Collector-Emitter Leakage Current at VCE = 32 V		3041.1**	nA			200
Ісво	Collector-Base Leakage Current at V _{CB} = 20 V	3036.1**	nA			100	
hre	Forward Current Transfer Ratio at VCE = 18 V, IC	= 30 mA	3076.1*		15	40	75
P _{1dB}	Power Output at 1 dB Gain Compression			dBm		23.0 22.0	
GidB	Associated 1 dB Compressed Gain			dB		13.5 8.0	
PSAT	Saturated Power Output (8 dB Gain) (3 dB Gain)	f = 2 GHz 4 GHz		dBm		25.5 25.0	
η	Power-Added Efficiency at 1 dB Compression	f = 2 GHz 4 GHz		%		35 25	
IP ₃	Third Order Intercept Point VCE = 18 V, IC = 30 mA	f = 4 GHz		dBm		32	

^{*300} µs wide pulse measurement at ≤2% duty cycle.

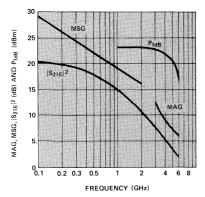


Figure 1. Typical MAG, Maximum Stable Gain (MSG), $|S_{21}e|^2$ and P_{1dB} Linear Power vs. Frequency at $V_{CE}=18~V$, $I_{C}=30~mA$.

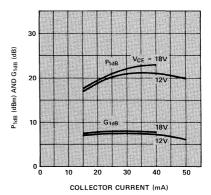


Figure 2. Typical P_{1dB} Linear Power and Associated 1 dB Compressed Gain vs. Current at $V_{CE}=12$ V and 18 V at 4 GHz.

[&]quot;Measured under low ambient light conditions

Typical S-Parameters * _{VCE = 18V, IC = 30 mA}

	S	11		S ₂₁			S ₁₂		s	22
Freq. (GHz)	Mag.	Ang.	dB	Mag.	Ang.	dB	Mag.	Ang.	Mag.	Ang.
0.100	0.74	-15	20.2	10.2	171	-38	0.01	83	0.99	-5
0.200	0.73	-30	19.9	9.88	162	-33	0.02	75	0.97	-10
0.300	0.72	-44	19.5	9.42	154	-30	0.03	69	0.93	-15
0.400	0.71	-57	19.0	8.87	146	-28	0.04	63	0.89	-19
0.500	0.70	-68	18.4	8.28	140	-26	0.05	58	0.85	-22
0.600	0.69	-78	17.7	- 7.71 -	134	-25	0.06	-54	0.80	-24
0.700	0.67	-87	17.1	7.16	129	-25	0.06	50	0.76	-26
0.800	0.67	-94	16.5	6.65	124	-24	0.06	47	0.73	-28
0.900	0.66	-101	15.8	6.19	120	-24	0.07	44	0.70	-29
1.000	0.65	-107	15.2	5.78	117	-23	0.07	42	0.67	-30
1.500	0.63	-128	12.6	4.25	103	-22	0.08	37	0.58	-32
2.000	0.62	-140	10.5	3.33	94	-22	0.08	35	0.53	-32
2.500	0.61	-148	8.7	2.73	87	-21	0.09	35	0.51	-33
3.000	0.61	-154	7.3	2.32	81	-21	0.09	35	0.50	-35
3.500	0.61	-158	6.1	2.02	76	-20	0.10	36	0.49	-36
4,000	0.60	-161	5.8	1.79	71	-20	0.10	37	0.49	-38
4.500	0.60	-164	4.1	1.61	66	-19	0.11	38	0.49	-40
5.000	0.60	-166	3.3	1.47	62	-19	0.11	39	0.49	-43
5.500	0.59	-168	2.6	1.35	58	-19	0.12	40	0.49	-45
6.000	0.59	-169	2.0	1.25	55	-18	0.12	40	0.49	-47

^{*}Values do not include any parasitic bonding inductances and were generated by use of a computer model.

LINEAR POWER TRANSISTOR CHIP

HXTR-5002

Features

HIGH OUTPUT POWER

29 dBm Typical P_{1dB} at 2 GHz
27.5 dBm Typical P_{1dB} at 4 GHz
HIGH P_{1dB} GAIN

12.5 dB Typical G_{1dB} at 2 GHz
7.5 dB Typical G_{1dB} at 4 GHz

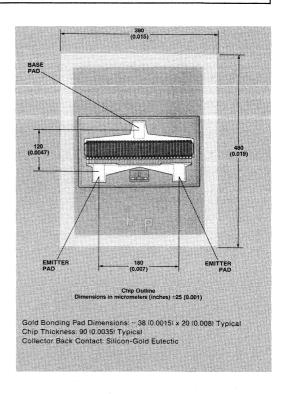
HIGH POWER-ADDED EFFICIENCY

Description/Applications

The HXTR-5002 is an NPN silicon bipolar transistor chip designed for use in hybrid applications requiring superior noise figure and associated gain performance at VHF, UHF, and microwave frequencies. Use of ion implantation and self alignment techniques in its fabrication produce superior device uniformities and performance.

The HXTR-5002 features a metallization system that provides consistent and reliable performance at rated dissipation under high temperature operation. The HXTR-5002 also is provided with a dielectric scratch protection over its active area.

Absolute Maximum Ratings*


 $(T_A = 25^{\circ} C)$

Symbol	Parameter	Limit
Vcвo	Collector to Base Voltage	45V
Vceo	Collector to Emitter Voltage	27V
VEBO	Emitter to Base Voltage	4V
Ic	DC Collector Current	250 mA
PT	Total Device Dissipation	4W
TJ	Junction Temperature	300° C
TSTG	Storage Temperature	-65°C to
		300°C

*Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes

- Power dissipation derating should include a Θ_{JB} (Junction-to-Back contact thermal resistance) of 125° C/W.
 Total Θ_{JA} (Junction-to-Ambient) will be dependent upon the heat sinking provided in the individual application.
- A MTTF of 3.5 x 10⁶ hours will be met or exceeded when the junction temperature is maintained under T_J = 125° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Recommended Die Attach and Bonding Procedures

Eutectic Die Attach at a stage temperature of 410 \pm 10°C under an N₂ ambient. Chip should be lightly scrubbed using a tweezer and eutectic should flow within five seconds.

Thermocompression Wire Bond at a stage temperature of $310\pm10^{\circ}$ C, using a tip force of 30 ± 5 grams with 0.7 or 1.0 mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not recommended.)

Electrical Specifications at T_A =25°C

Symbol	Parameters and Test Conditions			Test MIL-STD-750	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at Ic=10mA			3001.1*	V	40		
BVceo	Collector-Emitter Breakdown Voltage at IC=50mA	١.		3011.1*	V	24		
BVEBO	Emitter-Base Breakdown Voltage at I _B =100μA			3026.1*	V	3.3		
lebo	Emitter-Base Leakage Current at V _{EB} =2V	lector-Emitter Breakdown Voltage at Ic=50mA litter-Base Breakdown Voltage at I _B =100µA litter-Base Leakage Current at V _{EB} =2V lector-Emitter Leakage Current at V _{CE} =32V lector-Base Leakage Current at V _{CE} =20V ward Current Transfer Ratio at V _{CE} =18V, I _C =110mA wer Output at 1dB Gain Compression f = 2GHz 4GHz lociated 1dB Compressed Gain f = 2GHz		3061.1	μА			5
ICES	Collector-Emitter Leakage Current at V _{CE} =32V	-		3041.1**	nA	-		200
Ісво	Collector-Base Leakage Current at V _{CB} =20V			3036.1**	nA			100
- hre -	Forward Current Transfer Ratio at Voe=18V, Ic=1	10mA		3076.1*		15	40	75
PidB	Power Output at 1dB Gain Compression	f =			dBm		29.0 27.5	
G _{1dB}	Associated 1dB Compressed Gain	f =	2GHz 4GHz		dB		12.5 7.5	
PSAT	Saturated Power Output (8dB Gain) (3dB Gain)	f =	2GHz 4GHz		dBm		31.0 29.5	
η	Power-Added Efficiency at 1dB Compression	f =	2GHz 4GHz		%		38 23	
IP ₃	Third Order Intercept Point VcE=18V, Ic=110mA	f =	4GHz		dBm		37	

^{*300} μ sec wide pulse measurement at \leq 2% duty cycle.

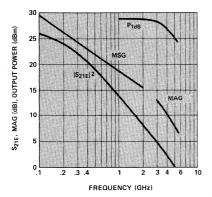


Figure 1. Typical $|S_{21}E|^2$ MAG and P_{1dB} Linear Power vs. Frequency at $V_{CE}=18$ V, $I_{C}=110$ mA.

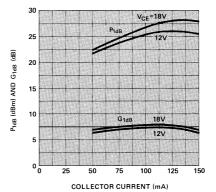


Figure 2. Typical P_{1dB} Linear Power and Associated 1 dB Compressed Gain vs. Current at $V_{CE}=12$ and 18 V at 4 GHz.

^{**}Measured under low ambient light conditions.

Typical S-Parameters* VCE = 18V, IC = 110mA

	S ₁₁			S ₂₁			S ₁₂		s	22
Freq. (GHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
0.100	0.55	-61	25.4	19.7	156	-31.6	0.03	68	0.93	-26
0.200	0.65	-98	24.2	16.2	133	-27.3	0.04	50	0.76	-46
0.300	0.72	-119	22.3	13.1	125	-25.6	0.05	39	0.63	-60
0.400	0.76	-132	20.6	10.7	117	-24.8	0.06	32	0.53	-71
0.500	0.79	-141	19.1	9.01	111	-24.4	0.06	27	0.45	-78
0.600	0.80	-147	17.8	7.73	106	-24.1	0.06	24	0.40	-84
0.700	0.81	-151	16.6	6.74	102	-24.0	0.06	22	0.36	-89
0.800	0.81	-155	15.5	5.97	99	-23.8	0.06	20	0.33	-93
0.900	0.82	-158	14.6	5.35	97	-23.7	0.06	19	0.31	-96
1.000	0.82	-160	13.7	4.84	94	-23.7	0.06	18	0.30	-99
1.500	0.83	-167	10.3	3.29	86	-23.4	0.07	16	0.25	-109
2.000	0.83	-170	7.9	2.49	80	-23.3	0.07	16	0.24	-114
2.500	0.83	-173	6.0	2.00	74	-23.1	0.07	17	0.24	-117
3.000	0.83	-174	4.5	1.68	69	-22.9	0.07	18	0.25	-118
3.500	0.83	-175	3.2	1.44	64	-22.6	0.07	19	0.27	-119
4.000	0.83	-176	2.1	1.27	60	-22.4	0.08	20	0.28	-120
4.500	0.83	-177	1.1	1.13	55	-22.1	0.08	21	0.30	-121
5.000	0.83	-177	0.3	1.03	51	-21.9	0.08	21	0.32	-121
5.500	0.83	-178	-0.5	0.94	47	-21.6	0.08	22	0.34	-122
6.000	0.83	-178	-1.2	0.87	43	-21.4	0.08	22	0.35	-123

^{*(}Values do not include any parasitic bonding inductances and were generated by use of a computer model.)

LOW NOISE TRANSISTOR CHIP

HXTR-6001

Features

LOW NOISE FIGURE

1.7 dB Typical F_{MIN} at 2 GHz 2.7 dB Typical F_{MIN} at 4 GHz

HIGH ASSOCIATED GAIN

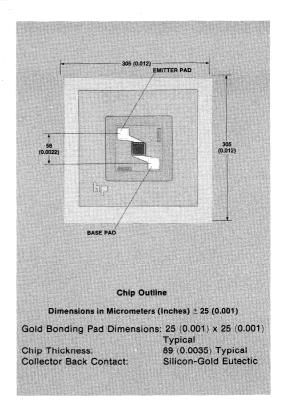
13.0 dB Typical G_a at 2 GHz 9.0 dB Typical G_a at 4 GHz

Description/Applications

The HXTR-6001 is an NPN silicon bipolar transistor chip designed for use in hybrid applicattons requiring superior noise figure and associated gain performance at VHF, UHF, and microwave frequencies. Use of ion implantation and self alignment techniques in its fabrication produce superior device uniformities and performance.

The HXTR-6001 features a metallization system that provides consistent and reliable performance at rated dissipation under high temperature operation. The HXTR-6001 also is provided with a dielectric scratch protection over its active area.

Absolute Maximum Ratings*


 $(T_A = 25^{\circ} C)$

Symbol	Parameter	Limit
Vcво	Collector to Base Voltage	35V
VCEO	Collector to Emitter Voltage	207
VEBO	Emitter to Base Voltage	1.5V
lc	DC Collector Current	20 mA
PT	Total Device Dissipation	300 mW
TJ	Junction Temperature	300° C
TstG	Storage Temperature	-65°C to
	the state of the s	300° C

*Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes

- Power dissipation derating should include a Θ_{JB} (Junction-to-Back contact thermal resistance) of 125°C/W.
 Total Θ_{JA} (Junction-to-Ambient) will be dependent upon the heat sinking provided in the individual application.
- A MTTF of 1.0 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Recommended Die Attach and Bonding Procedures

Eutectic Die Attach at a stage temperature of $410 \pm 10^{\circ}$ C under an N₂ ambient. Chip should be lightly scrubbed using a tweezer and eutectic should flow within five seconds.

Thermocompression Wire Bond at a stage temperature of $310\pm10^{\circ}$ C, using a tip force of 30 ± 5 grams with 0.7 or 1.0 mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not recommended.)

Electrical Specifications at $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions		MIL-STD-750 Test Method	Units	Min.	Typ.	Max.
BVces	Collector-Emitter Breakdown Voltage at Ic=100µA		3011.1*	٧	30		
ICEO	Collector-Emitter Leakage Current at V _{CE} =10V		3041.1**	nA			500
Гово	Collector Cutoff Current at V _{CB} =10V		3036.1**	nA			100
hre	Forward Current Transfer Ratio at VcE=10V, Ic=4mA		3076.1*		50	150	250
FMIN	Minimum Noise Figure	f=2 GHz 4 GHz				1.7 2.7	
Ga	Associated Gain	f=2 GHz 4 GHz	3246.1	dB		13.0 9.0	
	V _{CE} =10V, I _C =4mA						

^{*300}µs wide pulse measurement ≤2% duty cycle.

^{**}Measured under low ambient light conditions.

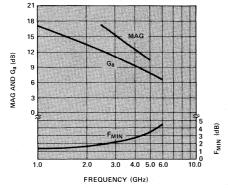


Figure 1. Typical MAG, Noise Figure (F_{MIN}), and Associated Gain vs. Frequency at $V_{CE} = 10 \text{ V}$, $I_C = 4 \text{ mA}$.

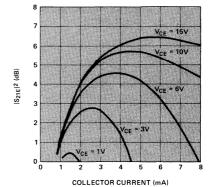


Figure 2. Typical $|S_{21E}|^2$, vs. Current at 4 GHz.

Typical S-Parameters*VCE = 10V, IC = 4mA

	s	11		S ₂₁			S ₁₂		S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang
100	0.87	-16	22.0	12.60	170	-46	0.005	82	0.99	-3
200	0.85	-30	21.7	12.10	160	-40	0.010	75	0.98	-5
300	0.82	-44	21.1	11.40	151	-36	0.015	68	0.95	-7
400	0.79	-57	20.5	10.60	144	-35	0.018	63	0.93	-9
500	0.76	-68	19.8	9.77	137	-34	0.021	58	0.91	-10
600	0.73	-78	19.1	9.00	131	-32	0.024	55	0.89	-10
700	0.70	-86	18.5	8.37	126	-32	0.025	52	0.87	-11
800	0.68	-94	17.6	7.62	121	-31	0.027	50	0.85	-11
900	0.66	-100	17.0	7.05	118	-31	0.028	48	0.84	-11
1000	0.65	-106	16.3	6.54	114	-31	0.029	47	0.82	-11
1500	0.60	-126	13.5	4.73	102	-29	0.034	45	0.79	-12
2000	0.58	-139	11.3	3.67	93	-29	0.037	45	0.78	-13
2500	0.57	-146	9.5	2.99	87	-28	0.041	47	0.77	-14
3000	0.56	-152	8.1	2.53	82	-27	0.045	49	0.77	-15
3500	0.56	-156	6.8	2.19	77	-26	0.049	51	0.76	-16
4000	0.55	-159	5.7	1.93	72	-26	0.053	52	0.76	-18
4500	0.55	-162	4.8	1.73	68	-25	0.057	53	0.76	-19
5000	0.55	-164	3.9	1.57	65	-24	0.062	54	0.76	-21
5500	0.55	-165	3.2	1.44	61	-24	0.066	55	0.76	-23
6000	0.54	-167	2.5	1.34	57	-23	0.071	55	0.76	-24
7000	0.54	-169	1.4	1.17	51	-22	0.080	56	0.77	-28

^{*}Values do not include any parasitic bonding inductances and were generated by use of a computer model

LOW NOISE TRANSISTOR CHIP

Features

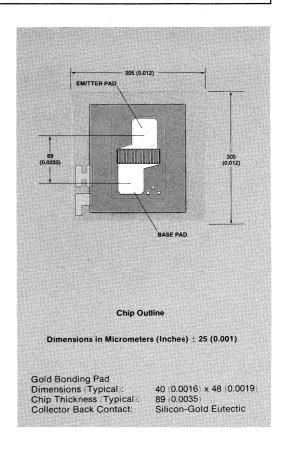
LOW NOISE FIGURE
2.8 dB Typical F_{MIN} at 4 GHz
HIGH ASSOCIATED GAIN
8 dB Typical Ga at 4 GHz
HIGH OUTPUT POWER
18.0 dBm Typical G_{1dB} at 4 GHz
WIDE DYNAMIC RANGE
LARGE GOLD BONDING PADS

Description

The HXTR-7011 is an NPN silicon bipolar transistor chip designed for use in hybrid applications requiring superior noise figure and associated gain performance at VHF, UHF, and microwave frequencies. Use of ion implantation and self alignment techniques in its fabrication produce superior device uniformities and performance.

The HXTR-7011 features a metallization system that provides consistent and reliable performance at rated dissipation under high temperature operation. The HXTR-7011 also is provided with a dielectric scratch protection over its active area and large gold bonding pads for ease of use in most hybrid applications.

Absolute Maximum Ratings*


 $(T_A = 25^{\circ}C)$

Symbol	Parameter	Limit
Vсво	Collector to Base Voltage	30 V
Vceo I	Collector to Emitter Voltage	18 V
VEBO	Emitter to Base Voltage	1.5 V
Jc	DC Collector Current	65 mA
Pt	Total Device Dissipation	600 mW
Tj	Junction Temperature	300°C
TstG	Storage Temperature	-65°C to
	and the same ways to be	300°C

*Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- Power dissipation derating should include a Θ_{JB} (Junction-to-Back contact thermal resistance) of 125° C/W.
 Total Θ_{JA} (Junction-to-Ambient) will be dependent upon the heat sinking provided in the individual application.
- A MTTF of 1 x 10^f hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Recommended Die Attach and Bonding Procedures

Eutectic Die Attach at a stage temperature of 410 ± 10°C under an N₂ ambient. Chip should be lightly scrubbed using a tweezer and eutectic should flow within five seconds.

Thermocompression Wire Bond at a stage temperature of $310\pm10^{\circ}$ C, using a tip force of 30 ± 5 grams with 0.7 or 1.0 mil gold wire. A one mil minimum wire clearance at the passivation edge is recommended. (Ultrasonic bonding is not recommended.)

Electrical Specifications at $T_{CASE} = 25^{\circ}C$

Symbol	Parameters and Test Conditions	7.3 A 2.3	MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at I _C = 100 µA		3001.1*	٧	30	400	
BVcEo	Collector-Emitter Breakdown Voltage at Ic = 15 mA		3011.1*	٧	18		
Ісво	Collector-Base Cutoff Current at V _{CE} = 15 V		3036.1**	nA			50
ICEO	Collector-Emitter Leakage at VCE = 15 V		3041.1	- nA			50
hFE	Forward Current Transfer Ratio at V _{CE} = 10 V, I _C = 10 mA	1	3076.1		55		175
FMIN	Minimum Noise Figure VCE = 10 V, IC = 10 mA	f = 1000 MHz f = 2000 MHz f = 4000 MHz	3246.1	dB		1.2 1.7 2.8	-
G _a	Associated Gain VCE = 10 V, IC = 10 mA	f = 1000 MHz f = 2000 MHz f = 4000 MHz	3246.1	dB		18.0 13.0 8.2	
PidB	Power Output at 1 dB Gain Compression, V _{CE} = 15 V, I _C = 18 mA,	f = 4000 MHz		dBm		18.0	
G _{1dB}	Associated 1 dB Compressed Gain, VcE = 15 V, Ic = 18 mA	f = 4000 MHz		dB	10.00	8.5	

^{*300} μs wide pulse measurement \leq 2% duty cycle. **Measured under low ambient light conditions.

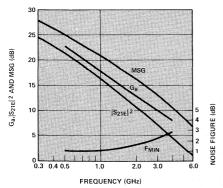


Figure 1. Typical F_{MIN}, G_a , $|S_{21E}|^2$ and MSG vs. Frequency at $V_{CE} = 10$ V, $I_C = 10$ 10 mA.

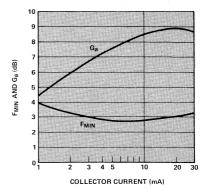


Figure 2. Typical FMIN and Associated Gain vs. Ic at 4 GHz for VcE = 10 V.

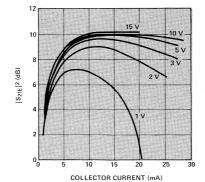
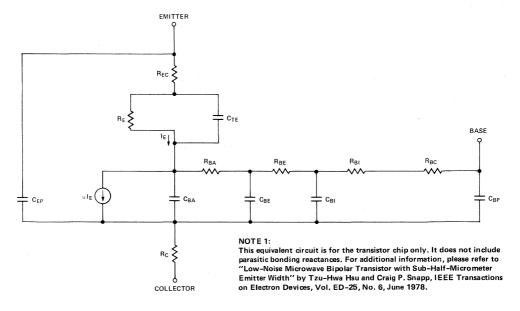


Figure 3. Typical $|S_{21E}|^2$ vs. Current at 2000 GHz.


Typical S-Parameters $(V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA})$

	S.	=		S ₂₁			S ₁₂			S ₂₂
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.68	-41	27.7	24.27	158	-36.6	0.02	66	0.93	-12
200	0.66	-74	26.1	20.18	140	-33.9	0.02	73	0.83	-19
300	0.63	-99	24.5	16.79	126	-32.1	0.03	55	0.73	-23
400	0.62	-111	23.0	14.13	119	-30.9	0.03	54	0,67	-23
500	0.62	-107	21.5	11,89	112	-29.3	0.03	48	0.62	-24
600	0.61	-135	20.2	10.23	107	-29.2	0.04	51	0.58	-22
700	0.60	-143	19.0	8.91	103	-29.4	0.03	53	0.57	-21
800	0.59	-149	18.0	7,94	99	-29.1	0.04	52	0.55	-20
900	0.59	-154	17.1	7.16	97	-28.6	0.04	55	0,53	-19
1000	0.59	-159	16.2	6.46	95	-27.6	0,04	55	0.52	-18
1500	0.59	-176	12.9	4,42	84	-26.6	0.05	64	0.48	-18
2000	0.57	172	10.5	3.35	77	-24.9	0.06	75	0.50	-15
2500	0.61	163	8.7	2.72	70	-23.3	0.07	83	0.46	-17
3000	0.64	156	7.2	2.29	64	-21.6	0.08	69	0.46	-20
3500	0.70	149	5.9	1.97	58	-20.0	0.10	94	0.43	-21
4000	0.71	144	4.7	1.72	53	-18.7	0.12	95	0.43	-28
4500	0.78	138	3,6	1.51	48	-17.1	0.14	99	0.40	-27
5000	0.83	137	2.8	1.38	42	-16.3	0.15	99	0.35	-41
5500	0.88	133	2.1	1.27	38	-15.0	0.18	98	0.36	-49
6000	0.93	134	1.1	1.14	33	-14.6	0.19	100	0.33	-67

Typical S-Parameters $(V_{CE} = 15 \text{ V}, I_C = 18 \text{ mA})$

100	S	11	100	S ₂₁			S ₁₂	A		S ₂₂
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.63	-53	29.5	29.85	151	-41.1	0.01	71	0.91	-13
200	0.62	-90	27.5	23.71	133	-36.3	0.02	60	0.79	-19
300	0.61	-112	25.5	18.84	121	-34.8	0.02	50	0.70	-21
400	0.61	-127	23.6	15.14	111	-32.6	0.02	56	0.64	-20
500	0.60	-130	22.8	13.80	108	-33.1	0.02	46	0.60	-20
600	0.60	-146	20.6	10.72	103	-31.6	0.03	49	0.59	-18
700	0.59	-152	19.3	9.23	100	-31.2	0.03	53	0.57	-17
800	0.59	-153	18.3	8.22	96	-30.5	0.03	55	0,56	-16
900	0.59	-162	17.3	7.33	94	-30.2	0.03	61	0.55	-14
1000	0.59	-166	16.5	16.68	91	-29.4	0.03	62	0.54	-14
1500	0.59	180	13.1	4.52	82	-27.7	0.04	69	0.52	-14
2000	0.58	163	10.6	3.39	75	-25.6	0.05	81	0.53	-12
2500	0.62	160	8.8	2.75	69	-24.0	0.06	89	0.49	-14
3000	0.64	158	7.8	2.32	63	-21.9	0.08	94	0.50	-17
3500	0.70	147	6.0	2.00	57	-20.5	0.09	97	0.47	-17
4000	0.72	143	4.8	1.74	52	-19.0	0.11	99	0.47	-24
4500	0.79	136	3.7	1.53	46	-17.4	0.14	102	0.44	-24
5000	0.85	136	2.9	1,40	41	-16.6	0.15	101	0.39	-37
5500	0.88	132	2.1	1.27	36	-15.2	0.17	101	0.39	-44
6000	0.94	133	1.2	1.15	31	-14.8	0.18	103	0.35	-61

SILICON BIPOLAR TRANSISTOR CHIP EQUIVALENT CIRCUITS^[1]

Current Dependent Current Source

$$\alpha = \frac{\alpha_0}{1 + j f/f_b} \exp(-j 2 \pi f \tau)$$

$$\alpha_0 = \frac{h_F E}{1 + h_F E}$$

$$R_e \alpha = \frac{\alpha_0}{1 + (f/f_b)^2} \left[\cos(2\pi f \tau) - \frac{f}{f_b} \sin(2\pi f \tau)\right]$$

$$Im \alpha = \frac{-\alpha_0}{1 + (f/f_b)^2} \left[\sin 2\pi f \tau + \frac{f}{f_b} \sin(2\pi f \tau)\right]$$

Bipolar Chip Equivalent Circuit Elements

Device	C _{BP} (pF)	C _{EP} (pF)	C _{BI} (pF)	C _{BE} (pF)	C _{BA} (pF)	C _{TE} (pF)	R _{EC}	R _{BI} & R _{BC}	R _{BE} (Ω)	R _{BA} (Ω)	R _C (Ω)	R _E	α0	f _b GHz	psec.
HXTR-2001, 15 V 25 mA	0.066	0.06	0.07	0.056	0.032	4.8	0.2	0.2	3.5	4.4	5	1.0	0.990	22.7	10.8
HXTR-2001, 15 V, 15 mA	0.066	0.06	0.7	0.056	0.032	4.8	0.2	0.2	3,5	4.4	5	1.7	0.990	22.7	10.6
HXTR-3001, 15 V, 15 mA	0.117	0.15	0.07	0.056	0.032	4.8	0.2	0.2	3.5	4.4	5	1.7	0.990	22.7	10.6
HXTR-3002, 18 V, 30 mA	0.117	0.19	0.07	0.053	1.034	5.1	7.2	0.2	5.6	4.7	5	0.86	0.976	22.7	10.8
HXTR-5001, 18 V, 30 mA	0.065	0.06	0.07	0.053	1.034	5.1	7.2	0.2	5.6	4.7	5	0.86	0.976	22.7	10.8
HXTR-5002, 18 V, 110 mA	0.105	0.15	0.22	0.18	0.11	17.3	3.1	0.2	1.7	1.4	3	0.24	0.976	22.7	10.9
HXTR-6001, 10 V, 4 mA	0.053	0.05	0.019	0.016	0.0055	1.03	0.7	0.4	7.8	6.1	7	8.6	0.990	22.7	12.1
HXTR-7011, 10 V, 10 mA	0.113	0.11	0.07	0.034	0.017	3.65	0.22	0.13	0.9	2.0	6	2.6	0.990	16.4	15.6

GENERAL PURPOSE TRANSISTOR

2N6679 (HXTR-2101)

Features

HIGH GAIN 10.5 dB Typical at 4 GHz

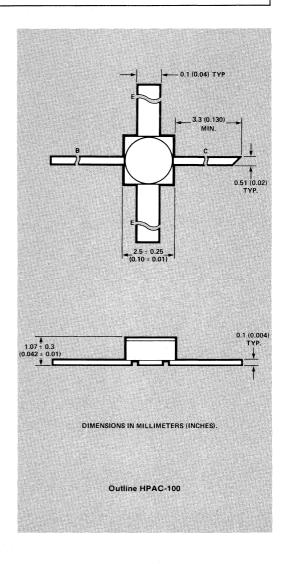
HERMETIC PACKAGE

Description

The 2N6679 (HXTR-2101) is an NPN bipolar transistor designed for high gain and output power at 4 GHz. The device is manufactured using ion implantation and self alignment techniques. The chip is provided with a dielectric scratch protection over its active area.

The 2N6679 is supplied in the HPAC-100, a rugged metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings*


(T_{CASE} = 25°C)

Symbol	Parameter	Limit
Vcso	Collector to Base Voltage	30V
Voeo	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.5V
Ic	DC Collector Current	70 mA
Pt	Total Device Dissipation	900 mW
TJ	Junction Temperature	300° C
Tstg	Storage Temperature	-65° C to
_	Lead Temperature	200°C
	(Soldering 10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- 1. A Θ_{JC} maximum of 210°C/W should be used for derating and junction temperature calculations ($T_J = P_D \times \Theta_{JC} + T_{CASE}$).
- A MTTF of 1.0 x 107 hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at T_{CASE}=25°C

Symbol	Parameters and Test Conditions	MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
BV _{CES}	Collector-Emitter Breakdown Voltage I _C =100µA	3011,1*	V	30		
ICEO	Collector-Emitter Leakage Current at V _{CE} =15V	3041.1	nΑ			500
Ісво	Collector Cutoff Current at V _{CB} =15V	3036.1	nΑ		-	100
hFE	Forward Current Transfer Ratio V _{CE} =15V, I _C =15mA	3076.1*	-	50	120	220
G _T	Tuned Gain V _{CE} = 15V, I _C = 25 mA, Frequency = 4 GHz		dB	9.0	10.5	
P _{1dB}	Power Output at 1 dB Compression V _{CE} =15V, I _C =25mA, Frequency = 4 GHz		dBm		18.5	

^{*300} µs wide pulse measurement ≤2% duty cycle.

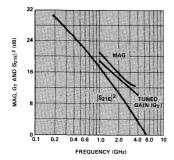


Figure 1. Typical MAG, $|S_{21E}|^2$ and Tuned Gain vs. Frequency at V_{CE} = 15 V, I_{C} = 25 mA.

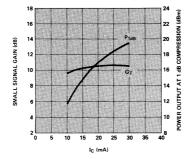


Figure 2. Typical Power Output at 1 dB Compression and Small Signal Gain vs. Collector at 4 GHz for VcE = 15 V.

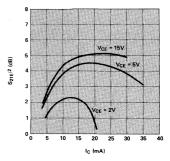


Figure 3. Typical |S_{21E}|² vs. Bias at

Typical S-Parameters $v_{CE} = 15V$, $I_C = 25 \text{ mA}$

	S ₁₁		S ₂₁			S ₁₂			S ₂₂		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang	
100	0.59	-66	30.8	34.6	146	-40.0	0.01	69	0.86	-18	
500	0.58	-150	22.1	12.7	96	-33.2	0.02	44	0.51	-27	
1000	0.59	-175	16.7	6.86	78	-30.5	0.03	51	0.44	-32	
1500	0.59	173	13.3	4.61	64	-28.0	0.04	55	0.45	-39	
2000	0.60	162	11.0	3.53	53	-25.7	0.05	55	0.44	-49	
2500	0.61	156	8.9	2.79	43	-24.2	0.06	55	0.47	-60	
3000	0.62	146	7.3	2.32	33	-22.6	0.07	56	0.48	-67	
3500	0.63	139	5.9	1.96	22	-21.2	0.09	53	0.52	-79	
4000	0.62	131	4.8	1.73	11	-19.7	0.10	50	0.55	-84	
4500	0.61	123	3.5	1.50	1 1	-18.8	0.12	48	0.59	-93	
5000	0.60	116	2.6	1.35	-9	-17.0	0.14	44	0.65	-102	
5500	0.62	109	1,8	1.23	-19	-15.9	0.16	36	0.66	-113	
6000	0.62	103	0.9	1.11	-28	-15.6	0.17	32	0.66	-123	
6500	0.62	93	0.0	1.02	-37	-13.7	0.20	28	0.67	-131	

GENERAL PURPOSE TRANSISTOR

HXTR-2102

Features

HIGH GAIN

11 dB Typical at 4 GHz

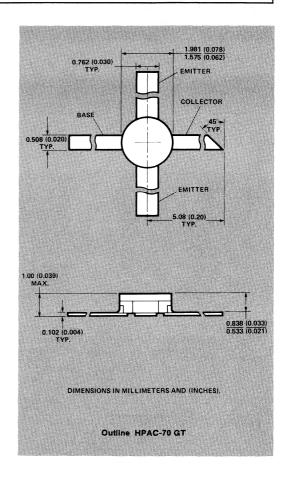
HERMETIC PACKAGE

Description

The HXTR-2102 is an NPN bipolar transistor designed for high gain and wide dynamic range up to 6 GHz. The device is manufactured using ion implantation and self alignment techniques. The chip is provided with a dielectric scratch protection over its active area.

The HXTR-2102 is supplied in the HPAC-70GT, a rugged metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings*


(T_{CASE} = 25° C)

Symbol	Parameter	Limit
Vcво	Collector to Base Voltage	30V
VCEO	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.5V
Ic	DC Collector Current	70 mA
Pt	Total Device Dissipation	900 mW
Tj	Junction Temperature	300° C
TSTG	Storage Temperature	-65° C to
	Lead Temperature	200°C
	(Soldering 10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- 1. A Θ_{JC} maximum of 185°C/W should be used for derating and junction temperature calculations ($T_{J} = P_{D} \times \Theta_{JC} + T_{CASE}$).
- A MTTF of 1.0 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at T_{CASE} = 25°C

Symbol	Parameters and Test Conditions	MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
BVces	Collector-Emitter Breakdown Voltage at I _C = 100µA	3011.1*	٧	30		
lceo	Collector-Emitter Leakage Current at VCE = 15V	3041.1	nA			500
Гово	Collector Cutoff Current at Vce = 15V	3036.1	nA			100
hre	Forward Current Transfer Ratio at VCE = 15V, IC = 15mA	3076.11	-	50	120	220
Gt	Tuned Gain		dB	13.0	15.0 11.0	
PidB	Power Output at 1 dB Compression		dBm		20.0 18.5	

^{*300}µs wide pulse measurement ≤2% duty cycle.

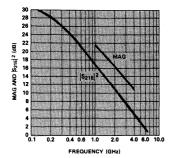


Figure 1. Typical MAG, and $|S_{21E}|^2$ vs. Frequency at $V_{CE}=15$ V, $I_{C}=25$ mA.

Figure 2. Typical Power Output at 1 dB Compression and Small Signal Gain vs. Current for V_{CE} = 15 V.

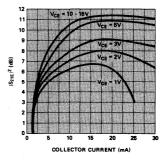


Figure 3. Typical $|S_{21E}|^2$ vs. Current

Typical S-Parameters VCE = 15V, IC = 25mA

	\$11			S ₂₁			S ₁₂		\$22		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	
100	0.63	-58	30.5	33.4	149	-39.2	0.011	62	0.88	-16	
200	0.63	-99	28.4	26.2	128	-35.9	0.016	49	0.72	-25	
300	0.64	-122	26.1	20.3	115	-34.9	0.018	45	0.61	-28	
400	0.64	-136	24.2	16.2	107	-33.6	0.021	42	0.54	-29	
500	0.64	-146	22.6	13.4	101	-32.8	0.023	42	0.50	-31	
600	0.64	-153	21.2	11.5	96	-32.4	0.024	43	0.48	-32	
700	0.64	-158	19.9	9.9	92	-32.0	0.025	43	0.47	-33	
800	0.64	-162	18.8	8.8	88	-31.7	0.026	45	0.47	-34	
900	0.64	-166	17.8	7.8	85	-31.4	0.027	44	0.48	-34	
1000	0.64	-170	16.9	7.0	83	-30.8	0.029	46	0.47	-35	
1500	0.66	179	13.5	4.7	70	-29.1	0.035	49	0.44	-40	
2000	0.65	172	11.1	3.6	60	-27.1	0.044	53	0.46	-50	
2500	0.67	165	9.1	2.9	50	-25.7	0.052	55	0.47	-59	
3000	0.64	161	7.6	2.4	40	-24.3	0.061	57	0.52	-66	
3500	0.72	156	6.4	2.1	32	-23.3	0.068	53	0.51	-79	
4000	0.69	149	5.3	1.8	22	-22.6	0.074	48	0.56	-85	
4500	0.70	141	4.4	1.7	14	-21.8	0.081	44	0.55	-92	
5000	0.72	136	3.3	1.5	6	-21.3	0.086	39	0.58	-101	
5500	0.70	128	2.5	1.3	-3	-20.7	0.092	34	0.62	-109	
6000	0.75	122	1.7	1.2	-11	-20.1	0.098	30	0.63	-118	
6500	0.70	119	0.8	1.1	-20	-19.6	0.105	26	0.70	-127	

LOW COST GENERAL PURPOSE TRANSISTOR

HXTR-3101

Features

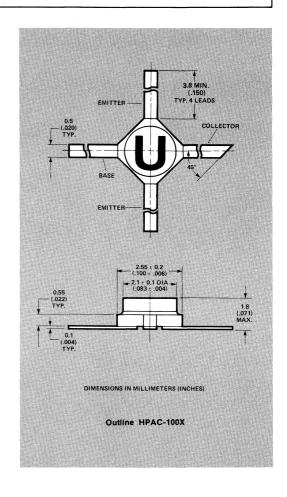
HIGH GAIN
19.5 dB Typical at 1 GHz
LOW NOISE FIGURE
1.8 dB Typical F_{MIN} at 1 GHz
LOW COST HERMETIC PACKAGE

Description

The HXTR-3101 is a low cost NPN bipolar transistor designed for high gain and wide dynamic range up to 4000 MHz. To achieve excellent uniformity and reliability, the manufacturing process utilizes self-alignment and ion implantation techniques. The chip is provided with a dielectric scratch protection over its active area.

The HXTR-3101 is supplied in the HPAC-100X, a rugged metal/ceramic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the electrical test conditions of MIL-STD-750.

Absolute Maximum Ratings *


(T_{CASE} = 25°C)

Symbol	Parameter	Value
Vcвo	Collector to Base Voltage	30V
VCEO	Collector to Emitter Voltage	18V
VEBO	Emitter to Base Voltage	1.5V
Ic	DC Collector Current	50mA
PT	Total Device Dissipation	600 mW
TJ	Junction Temperature	300° C
Tstg	Storage Temperature	-65°C to 150°C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes

- A Ouc maximum of 180° C/W should be used for derating and junction temperature calculations (T_J = P_D x Ouc + TCASE).
- A MTTF of 1 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at T_{CASE} = 25°C

Symbol	Parameters and Test Conditions	MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
BVcBO	Collector-Base Breakdown Voltage at $I_C = 100 \mu A$	3001.1*	V	30		
Iceo	Collector-Base Cutoff Current at VcB = 15 V	3036.1**	nA			500
hre	Forward Current Transfer Ratio at VcE = 10 V, Ic = 10 mA	3076.1*		50		180
f _T	Gain Bandwidth Product at V _{CE} = 10 V, I _C = 15 mA		GHz		6	
S _{21E} ²	Transducer Gain at 1000 MHz at V _{CE} = 10 V, I _C = 15 mA		dB		15.0	
FMIN	Minimum Noise Figure at 1000 MHz VCE = 10 V, IC = 10 mA	3246.1	dB		1.8	
MAG	Maximum Available Gain at 1000 MHz Vce = 10 V, Ic = 15 mA		dB		19.5	

^{*300} µs wide pulse measurement ≤ 2% duty cycle.

^{**}Measured under low ambient light conditions.

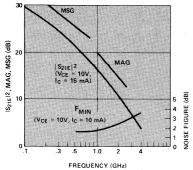


Figure 1. Typical |S_{21E}|², MAG, Maximum Stable Gain (MSG), and Noise Figure vs. Frequency

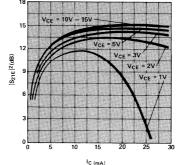


Figure 2. Typical $|S_{21E}|^2$ vs. Current at 1000 MHz

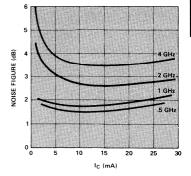


Figure 3. Typical Noise Figure vs. Collector Current $(V_{CE} = 10V)$

Typical S-Parameters (VCE = 10 V, IC = 10 mA)

100	S ₁₁		S ₂₁			S ₁₂			S ₂₂		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	
100	0.705	-50	27.7	24.266	149	-36.7	0.015	60	0.903	-20	
300	0.606	-110	23.5	14.962	116	-30.4	0.030	43	0.624	-36	
500	0.565	-139	20.1	10.116	101	-28.9	0.036	41	0.499	-40	
800	0.559	-162	16.5	6.683	89	-27.4	0.043	43	0.430	-41	
1000	0.571	-169	14.5	5.330	78	-25.7	0.052	44	0.408	-43	
1500	0.574	174	11.2	3.627	63	-23.6	0.066	48	0.394	-48	
2000	0.591	161	8.9	2.774	49	-21.9	0.080	48	0.392	-57	
3000	0.619	143	5.7	1.936	25	-18.8	0.115	45	0.427	-81	
4000	0.639	125	3.4	1.488	1	-16.2	0.155	39	0.470	-107	

 $(V_{CE} = 10 \text{ V}, I_C = 15 \text{ mA})$

	S ₁₁		S ₂₁			S ₁₂			S ₂₂	
Freq. (MHz)	Mag. Ang.		Ang. (dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.641	-60	29.5	29.854	144	-37.6	0.013	57	0.863	-23
300	0.565	-122	24.5	16.788	112	-31.8	0.026	44	0.556	-38
500	0.551	-149	20.7	10.839	98	-30.1	0.031	44	0.444	-40
800	0.553	-168	17.1	7.161	87	-28.1	0.039	50	0.387	-41
1000	0.560	-175	15.1	5,709	77	-26.4	0.048	49	0.363	-42
1500	0.564	171	11.8	3.869	62	-23.6	0.066	54	0.356	-47
2000	0.583	159	9.4	2.955	49	-21.6	0.083	52	0.354	-56
3000	0.611	142	6.3	2.058	26	-18.4	0.120	47	0.389	-81
4000	0.633	124	4.0	1.587	2	-15.9	0.160	39	0.431	-106

LOW COST LINEAR POWER TRANSISTOR

HXTR-3102

Features

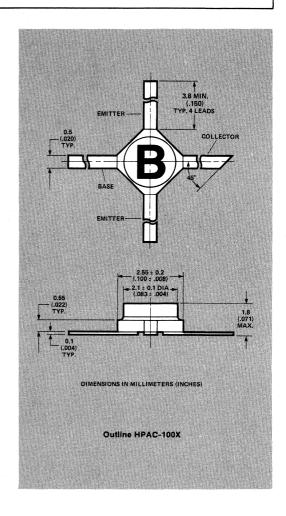
HIGH OUTPUT POWER
21 dBm Typical P_{1dB} at 1 GHz
HIGH P_{1dB} GAIN
11.5 dB Typical G_{1dB} at 1 GHz
LOW COST HERMETIC PACKAGE

Description

The HXTR-3102 is a low cost NPN bipolar transistor designed for high linear output power and high gain up to 4000 MHz. To achieve excellent uniformity and reliability, the manufacturing process utilizes self-alignment and ion implantation techniques. The chip is provided with a dielectric scratch protection over its active area and Ta2N emitter ballast resistors.

The HXTR-3102 is supplied in the HPAC-100X, a rugged metal/ceramic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the electrical test conditions of MIL-STD-750.

Absolute Maximum Ratings*


(T_{CASE} = 25°C)

Symbol	Parameter	Value
Vcвo	Collector to Base Voltage	35V
VCEO	Collector to Emitter Voltage	25V
VEBO	Emitter to Base Voltage	3.5V
lc .	DC Collector Current	100mA
Pt	Total Device Dissipation	700mW
T	Junction Temperature	300° C
Tstg	Storage Temperature	-65°C to 150°C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- A Θ_{JC} maximum of 165° C/W should be used for derating and junction temperature calculations (T_J = P_D x Θ_{JC} + T_{CASE}).
- A MTTF of 3.5 x 10⁶ hours will be met or exceeded when the junction temperature is maintained under T_J = 125° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters and Test Conditions	MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at Iο = 100 μA	3001.1*	٧	35		
Ісво	Collector-Base Cutoff Current at VcB = 20 V	3036.1**	nA			200
hre	Forward Current Transfer Ratio at VcE = 15 V, Ic = 30 mA	3076.1*		15		75
fτ	Gain Bandwidth Product at Vce = 15 V, Ic = 30 mA		GHz		6	
S _{21E} ²	Transducer Gain at 1000 MHz at VcE = 15 V, Ic = 30 mA		dB		12.5	
P _{1dB}	Power Output at 1 dB Compression at 1000 MHz VcE = 15 V, Ic = 30 mA		dBm		21.0	
G _{1dB}	Associated 1 dB Compressed Gain at 1000 MHz VcE = 15 V, Ic = 30 mA		dB		15.0	

^{*300} µs wide pulse measurement ≤ 2% duty cycle. **Measured under low ambient light conditions.

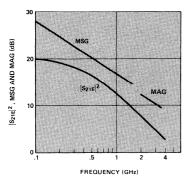


Figure 1. Typical |S21E|2, MAG, and Maximum Stable Gain (MSG) vs. Frequency ($V_{CE} = 15 \text{ V}, I_{C} = 30 \text{ mA}$)

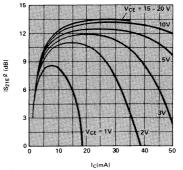


Figure 2. Typical |S21E|2 vs. Current at 1000 MHz

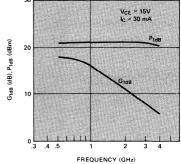


Figure 3. Typical Power Output at 1 dB Gain Compression vs. Frequency.

Typical S-Parameters (VCE = 15 V, IC = 20 mA)

	S-	11	S ₂₁				S ₁₂	S ₂₂		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.767	-19	18.9	8.810	165	-36.0	0.016	72	0.985	-10
300	0.699	-52	17.7	7.674	143	-27.0	0.045	60	0.892	-25
500	0.620	-79	16.1	6.383	126	-24.0	0.063	50	0.783	-35
800	0.556	-110	13.8	4.898	109	-22.2	0.078	41	0.654	-40
1000	0.548	-126	12.7	4.317	95	-21.0	0.089	34	0.598	-45
1500	0.523	-155	9.9	3.143	74	-20.2	0.098	30	0.525	-55
2000	0.513	-177	7.9	2.475	57	-19.7	0.103	29	0.489	-63
3000	0.534	156	5.1	1.792	30	-17.8	0.129	31	0.495	-85
4000	0.546	132	3.0	1.412	4	-15.6	0.166	29	0.522	-109

 $(V_{CE} = 15 \text{ V}, I_{C} = 30 \text{ mA})$

and the second second	S ₁₁			S ₂₁			S ₁₂	S ₂₂		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.777	-21	19.7	9.661	164	-35.9	0.016	71	0.985	-10
300	0.694	-57	18.3	8.222	139	-27.1	0.044	58	0.874	-27
500	0.606	-85	16.4	6.607	122	-24.4	0.060	48	0.757	-36
800	0.538	-116	13.9	4.955	105	-22.7	0.073	40	0.630	-40
1000	0.535	-131	12.7	4.296	92	-21.4	0.085	34	0.580	-44
1500	0.513	-159	9.8	3.086	72	-20.4	0.095	32	0.518	-53
2000	0.508	-180	7.7	2.415	55	-19.8	0.102	31	0.488	-62
3000	0.532	153	4.8	1.740	28	-17.8	0.129	33	0.500	-84
4000	0.546	130	2.7	1.362	3	-15.5	0.167	29	0.527	-108

GENERAL PURPOSE TRANSISTOR

2N6838 (HXTR-3103)

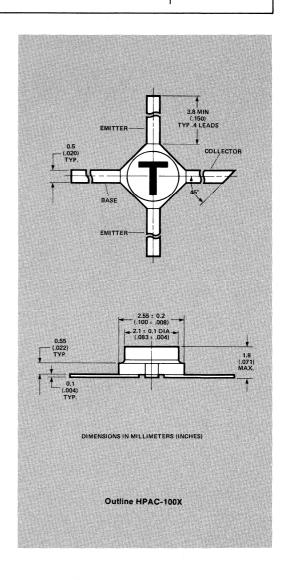
Features

GUARANTEED NOISE FIGURE 2.3 dB Maximum F_{MIN} at 1 GHz HIGH GAIN 13.5 dB Minimum $|S_{21E}|^2$ at 1 GHz HIGH GAIN BANDWIDTH PRODUCT 7.0 GHz Typical f_T WIDE DYNAMIC RANGE LOW COST HERMETIC PACKAGE

Description

The HXTR-3103 is an NPN bipolar transistor designed for high gain and wide dynamic range up to 5 GHz. The device utilizes ion implantation and self alignment techniques in its manufacture. The chip is provided with a dielectric scratch protection over its active area.

The HXTR-3103 is supplied in the HPAC-100X, a rugged metal/ceramic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(TCASE = 25°C)

Symbol	Parameter	Value
Vcво	Collector to Base Voltage	30V
VCEO	Collector to Emitter Voltage	18V
VEBO	Emitter to Base Voltage	1.5V
Ic	DC Collector Current	50mA
Pt	Total Device Dissipation	600 mW
TJ	Junction Temperature	300°C
TstG	Storage Temperature	-65°C to
		150° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

- A Θ_{JC} maximum of 180° C/W should be used for derating and junction temperature calculations (T_J = P_D x Θ_{JC} + T_{CASE}).
- A MTTF of 1 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters and Test Conditions		MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage	at I _C = 100 μA	3001.1*	٧	30		
BVCEO	Collector-Emitter Breakdown Voltag	e at Ic = 10 mA	3011.1*	٧	16		
ГСВО	Collector-Base Cutoff Current at Vol	₃ = 15 V	3036.1**	nA			50
ICEO	Collector-Emitter Leakage Current a	t V _{CE} = 15V	3041.1	nA			100
hfE	Forward Current Transfer Ratio at V	CE = 10 V, IC = 10 mA	3076.1*		50		180
fr	Gain Bandwidth Product at V _{CE} = 10	0 V, Ic = 15 mA		GHz	5.0	7.0	100
IS _{21E} 2	Transducer Gain at 1000 MHz at Vce		dB	13.5	15.0		
FMIN	Minimum Noise Figure at 1000 MHz V _{CE} = 10 V, I _C = 10 mA		3246.1	dB		1.7	2.3
F(50Ω)	Noise Figure with 50 ohm Source VcE = 10 V, Ic = 10 mA	f = 1000 MHz		dB		2.1	
	Principles and the second second	f = 500 MHz		dB		1.7	
P _{1dB}	Power Output at 1 dB Compression a	t 1000 MHz		dBm		16.0	
GidB	Associated 1 dB Compressed Gain at 1000 MHz VcE = 10 V, Ic = 15 mA			dB		16.0	2.2.23 pt. 1
C12E	Reverse Transfer Capacitance IC = 0 mA; VCE = 10 V; f = 1 MHz			pF		0.33	

^{*300} μ s wide pulse measurement \leq 2% duty cycle.

^{**}Measured under low ambient light conditions.

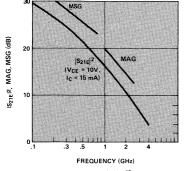


Figure 1. Typical $|S_{21E}|^2$ G_a (max), Maximum Stable Gain (MSG).

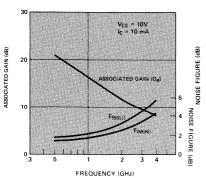


Figure 4. Typical Noise Figure vs. Frequency.

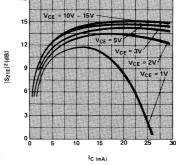


Figure 2. Typical $|S_{21E}|^2$ vs. Current at 1000 GHz.

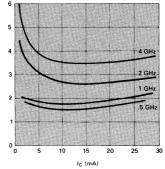


Figure 5. Typical Noise Figure vs. Collector Current.

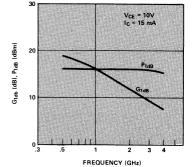


Figure 3. Typical Power Output at 1 dB Gain Compression vs. Frequency.

Typical Noise Parameters

 $V_{CC} = 10 \text{ V}, I_{C} = 10 \text{ mA}$

Freq.	FMIN	Г	0	Rn
(GHz)	(dB)	Mag.	Ang.	(ohms)
.5	1,4	.121	96	114.4
1.0	1.7	.301	121	15.2
2.0	2.5	.461	173	5.2
3.0	3.3	.553	-157	8.4
4.0	4.2	648	-139	13.4

Typical S-Parameters $(V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA})$

	S	11		S ₂₁			S ₁₂		S ₂₂	
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	.70	-50	27.7	24.26	149	-36.7	.015	60	.90	-20
200	.64	-86	25.6	19.05	129	-32.2	.025	49	.74	-31
300	.60	-110	23.5	14.96	116	-30.4	.030	43	.62	-37
400	.57	-127	21.6	12.02	108	-29.6	.033	41	.54	-38
500	56	-139	20.1	10.11	102	-28.9	.036	- 41	.49	-40
600	.55	-149	18.7	8.61	97	-28.5	.038	42	.46	-40
700	.56	-157	17.5	7.49	93	-27.9	.040	43	.44	-42
800	.55	-162	16.5	6.68	89	-27.4	.043	44	.43	-42
900	.55	-168	15.5	5.95	85	-26.9	.045	46	.41	-43
1000	.57	-169	14.5	5,33	78	-25.7	.052	42	.40	-40
1500	.57	174	11.2	3.62	63	-23.6	.066	48	.39	-48
2000	.59	162	8.9	2.77	49	-21.9	.080	48	.39	-57
2500	.61	153	7.2	2.28	37	-20.4	.096	48	.39	-71
3000	.61	143	5.7	1.93	25	-18.8	.115	45	.42	-81
3500	.65	134	4.5	1.67	13	-17.5	.134	43	.42	-94
4000	.63	125	3.5	1.48	1	-16.2	.155	39	.47	-107

Typical S-Parameters (V_{CE} =V 10 V, I_C = 15 mA)

	S	11	S ₂₁				S ₁₂	100	S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	.64	-60	29.5	29.85	144	-37.6	.013	57	.86	-24
200	.58	-98	26.9	22.13	124	-33.4	.021	47	.67	-34
300	.56	-122	24.5	16.78	112	-31.8	.026	44	.55	-38
400	.54	-138	22.4	13.18	104	-30.9	.029	43	.48	-39
500	.54	-149	20.7	10.83	98	-30.1	.031	44	.44	-40
600	.53	-157	19.3	9.22	94	-29.5	.033	47	.41	-40
700	.54	-164	18.1	8.03	90	-28.7	.037	49	.39	-41
800	.54	-168	17.1	7.16	87	-28.1	.039	50	.38	-41
900	.54	-173	16,1	6.38	84	-27.4	.043	52	.37	-42
1000	.56	-175	15.1	5.70	77	-26.4	,048	49	.36	-39
1500	.56	171	11.8	3.86	62	-23.6	.066	54	.35	-47
2000	.58	159	9.4	2.95	49	-21.6	.083	52	.35	-56
2500	.61	151	7.7	2.42	38	-20.0	.100	- 51	.35 —	-70
3000	.61	142	6.3	2.05	26	-18.4	.120	47	.38	-81
3500	.64	133	5.0	1.78	14	-17.1	.139	44	.38	-94
4000	.63	124	4.0	1.58	2	-15.9	.160	39	.43	-106

LINEAR POWER TRANSISTOR

2N6839 (HXTR-3104)

Features

HIGH OUTPUT POWER

19.0 dBm Minimum P_{1dB} at 1 GHz

HIGH P_{1dB} GAIN

14.0 dB Minimum G_{1dB} at 1 GHz

HIGH GAIN BANDWIDTH PRODUCT

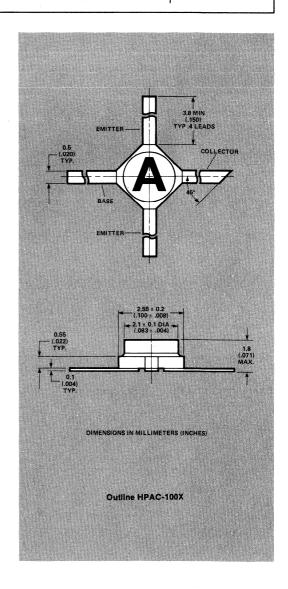
5.5 GHz TYPICAL f_T

LOW COST HERMETIC PACKAGE

Description

The HXTR-3104 is an NPN bipolar transistor designed for high output power and gain up to 4 GHz. Ion implantation and self alignment techniques are used in its manufacture to produce excellent uniformity and reliability. The chip has a dielectric scratch protection over its active area and a Ta2N ballast resistor for ruggedness.

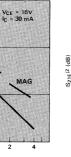
The HXTR-3104 is supplied in the HPAC-100X, a rugged metal/ceramic package, and is capable of meeting the environmental requirements of MIL-S-19500 and test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(T_{CASE} = 25°C)

Symbol	Parameter	Value
Vceo	Collector to Base Voltage	35V
VCEO	Collector to Emitter Voltage	25V
VEBO	Emitter to Base Voltage	3.5V
Ic.	DC Collector Current	100mA
PT	Total Device Dissipation	700mW
Tu	Junction Temperature	300° C
TSTG	Storage Temperature	-65° C to 150° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.


- A OJC maximum of 165° C/W should be used for derating and junction temperature calculations (TJ = PD x OJC + TCASE).
- A MTTF of 3.5 x 10⁶ hours will be met or exceeded when the
 junction temperature is maintained under T_J = 125°C (based
 on an activation energy of 1.1 eV). For operation above this
 condition, refer to page 108. "Reliability Performance of
 Bipolar Transistors".

Symbol	Parameters and Test Conditions	MIL-STD-750 Test Method	Units	Min.	Typ.	Max.
ВУсво	Collector-Base Breakdown Voltage at I _C = 100 μA	3001.1*	٧	- 35		
BVCEO	Collector-Emitter Breakdown Voltage at I _C = 15 mA	3011.1*	٧	24		
ВУЕВО	Emitter-Base Breakdown Voltage at I _B = 30 μA	3026.11	V	3.3		
Ісво	Collector-Base Cutoff Current at VCB = 20 V	3036.1**	nA			50
ICEO	Collector-Emitter Leakage Current at V _{CE} = 15 V	3041.1	nA			75
hre	Forward Current Transfer Ratio at V _{CE} = 15 V, I _C = 30 mA	3076.1*		15		75
fτ	Gain Bandwidth Product at V _{CE} = 15 V, I _C = 30 mA		GHz	4.0	5.5	
S _{21E} ²	Transducer Gain at 1000 MHz at VcE = 15 V, Ic = 30 mA		dB	10.5	12.5	
P _{1dB}	Power Output at 1 dB Compression at 1000 MHz at VCE = 15 V, IC = 30 mA		dBm	19.0	21.0	
G1dB	Associated 1 dB Compressed Gain at 1000 MHz VCE = 15 V, IC = 30 mA		dB	14.0	16.0	
C _{12E}	Reverse Transfer Capacitance IC = 0 mA; VcE = 10V; f = 1 MHz		pF		0.36	

^{*300}µs wide pulse measurement ≤ 2% duty cycle.

S21E 2, MAG, MSG (dB)

 $\label{eq:FREQUENCY (GHz)} Figure 1. \ Typical \ |S_{21}\text{E}|^2, MAG, and Maximum Stable Gain (MSG) vs.} \\ Frequency.$

**Measured under low ambient light conditions.

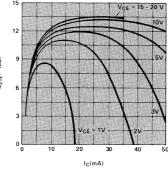


Figure 2. Typical $|S_{21E}|^2$ vs. Current at 1000 MHz.

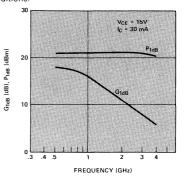


Figure 3. Typical Power Output at 1 dB Gain Compression vs. Frequency.

Typical S-Parameters $_{1}V_{CE} = 15 \text{ V}, I_{C} = 20 \text{ mA}$

	\$ ₁₁		S ₂₁			S ₁₂			S ₂₂		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	
100	0.76	-19	18.9	8.81	165	-36.0	0.016	72	0.98	-10	
300	0.69	-52	17.7	7.67	143	-27.0	0.045	60	0.89	-25	
500	0.62	-79	16,1	6.38	126	-24.0	0.063	50	0.78	-35	
800	0.55	-110	13.8	4.89	109	-22.2	0.078	41	0.65	-40	
1000	0.54	-126	12.7	4.31	95	-21.0	0.089	34	0.59	-45	
1500	0.52	-155	9.9	3.14	74	-20.2	0.098	30	0.52	-55	
2000	0.51	-177	7.9	2.47	57	-19.7	0.103	29	0.48	-63	
3000	0.53	156	5.1	1.79	30	-17.8	0.129	31	0.49	-85	
4000	0.54	132	3.0	1,41	4	-15.6	0.166	29	0.52	-109	

Typical S-Parameters $(V_{CE} = 15 \text{ V}, I_C = 30 \text{ mA})$

	S ₁₁			S ₂₁			S ₁₂	S ₂₂		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.77	-21	19.7	9.66	164	-35.9	0.016	71	0.98	-10
300	0.69	-57	18.3	8.22	139	-27.1	0.044	58	0.87	-27
500	0.60	-85	16.4	6.60	122	-24.4	0.060	48	0.75	-36
800	0.53	-116	13.9	4.95	105	-22.7	0.073	40	0.63	-40
1000	0.53	-131	12.7	4.29	92	-21.4	0.085	34	0.58	-44
1500	0.51	-159	9.8	3.08	72	-20.4	0.095	32	0.51	-53
2000	0.50	-180	7.7	2.41	55	-19.8	0.102	31	0.48	-62
3000	0.53	153	4.8	1.74	28	-17.8	0.129	33	0.50	-84
4000	0.54	130	2.7	1.36	3	-15.5	0.167	29	0.52	-108

LOW COST, LOW NOISE TRANSISTOR

Features

LOW NOISE FIGURE

1.4 dB Typical F_{MIN} at 1 GHz

HIGH ASSOCIATED GAIN

16.6 dB Typical G_a at 1 GHz

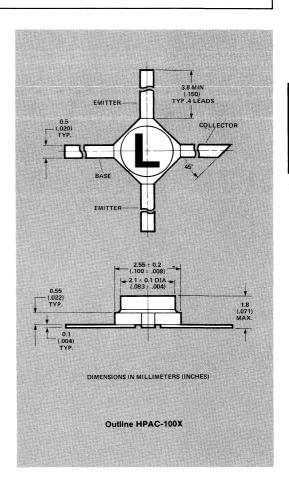
WIDE DYNAMIC RANGE

LOW COST HERMETIC PACKAGE

Description

The HXTR-3615 is a low cost NPN silicon bipolar transistor. Designed to provide low noise, high gain, and wide dynamic range performance for VHF, UHF, and microwave applications. This device is manufactured using ion implantation and self alignment techniques and the transistor chip has a dielectric scratch protection over its active area.

The HXTR-3615 is supplied in the HPAC-100X, a rugged metal/ceramic package, capable of meeting the environmental requirements of MIL-S-19500 and the electrical test conditions of MIL-STD-750.


Absolute Maximum Ratings*

(T_{CASE} = 25°C)

Symbol	Parameter	Value
Vcво	Collector to Base Voltage	25 V
VCEO	Collector to Emitter Voltage	16 V
VEBO	Emitter to Base Voltage	1.5 V
lc l	DC Collector Current	55 mA
Pt	Total Device Dissipation	500 mW
Tu	Junction Temperature	300°C
TstG	Storage Temperature	-65° C to 150° C

*Operation in excess of any one of these conditions may result in permanent damage to this device.

- A OJC maximum of 170° C/W should be used for derating and junction temperature calculations (T_J = P_D x OJC + TCASE).
- A MTTF of 1 x 7 hours will be met or exceeded when the junction temperature is maintained under T_J = 200°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters and Test Conditions		MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at I _C = 100 μA	3001.1*	٧	25			
BVCEO	Collector-Emitter Breakdown Voltage at I _C = 15 mA	3011.11	٧	16			
Ісво	Collector-Base Cutoff Current at V _{CB} = 15 V	3036.1**				100	
ICEO	Collector-Emitter Leakage Current at VcE = 15 V	3041.1	пA			100	
hfE	Forward Current Transfer Ratio at VcE = 10 V, Ic = 10 m.	3076.1*		50		180	
fŢ	Gain Bandwidth Product at V _{CE} = 10 V, I _C = 10 mA		GHz		5		
FMIN	Minimum Noise Figure at VCE = 10 V, IC = 10 mA	f = 500 MHz f = 1000 MHz f = 2000 MHz f = 4000 MHz		dВ	18 (18 to 18	1.3 1.4 2.0 3.5	
Ga	Associated Gain VGE = 10 V, IC = 10 mA	f = 500 MHz f = 1000 MHz f = 2000 MHz f = 4000 MHz		dΒ	111	21.5 16.6 12.0 7.0	
P _{1dB}	Power Output at 1 dB Gain Compression at 1000 MHz VGE = 15 V, IC = 18 mA			dBm		19.0	
G _{1dB}	Associated 1 dB Compressed Gain at 1000 MHz V _{CE} = 15 V, I _C = 18 mA			dB		19.0	
C _{12E}	Reverse Transfer Capacitance VcB = 10 V, Ic = 0 mA	f= 1 MHz		pF	300	0.3	

^{*300} µs wide pulse measurement ≤ 2% duty cycle.

^{**}Measured under low ambient light conditions.

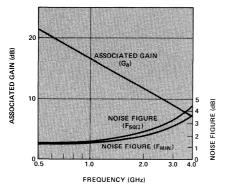


Figure 1. Typical FMIN and Associated Gain vs. Frequency at VCE = 10 V,

Typical Noise Parameters $V_{CE} = 10 \text{ V, } I_{C} = 10 \text{ mA}$

Frequency (MHz)	F _{MIN} (dB)	F _{50Ω} (dB)	T, Mag.	Ang.	R _n (ohms)
500	1,3	1.3	(50 n)	-	0
1000	1.4	1,6	0.20	135	15.4
2000	2.0	2.4	0.39	-177	4.7
4000	3.5	4.4	0.54	-116	18.1

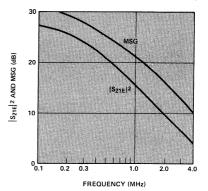


Figure 2. Typical $|S_{21}E|^2$ and Maximum Stable Gain (MSG) vs. Frequency at $V_{CE} = 10 \text{ V}$ and $I_{C} = 10 \text{ mA}$.

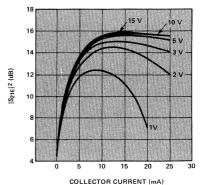


Figure 3. Typical |S21E|2 vs. Current at 1000 MHz.

Typical S-Parameters $(V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA})$

	s	11 -		S ₂₁			S ₁₂			S ₂₂
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.67	-43	27.6	23.92	155	-35.9	0.02	66	0.92	-14
200	0.63	-78	25.9	19.63	136	-33.2	0.02	70	0.81	-23
300	0.59	-103	24,1	15.94	121	-31.4	0.03	53	0.70	-28
400	0.57	-119	22.4	13.22	112	-30.2	0.03	52	0.64	-30
500	0.57	-132	20.9	11.11	105	-28.6	0.04	46	0.59	-32
600	0.55	-141	19.6	9.52	99	-28.4	0.04	49	0.56	-32
700	0.54	-149	18.4	8.30	94	-28.4	0.04	50	0.55	-32
800	0.53	-156	17.4	7.37	89	-28.0	0.04	49	0.53	-32
900	0.53	-162	16.4	6.61	86	-27.3	0.04	51	0.52	-32
1000	0.52	-168	15.6	6,00	83	-26.4	0.05	50	0.50	-34
1500	0.53	172	12.2	4.09	67	-24.7	0.06	55	0.47	-41
2000	0.50	155	9.8	3.11	54	-22.7	0.07	58	0.50 -	-45
2500	0.54	142	8.1	2.53	43	-20.8	0.09	59	0,47	-55
3000	0.55	130	6.6	2.14	32	-19.0	0.11	58	0.49	-64
3500	0.60	117	5.4	1.87	20	-17.4	0.14	56	0.47	-71
4000	0.61	108	4,3	1.63	10	-16.0	0.16	52	0.49	-83
5000	0.72	90	2.6	1.35	-10	-13.4	0.21	43	0.44	-105
6000	0.81	76	1.2	1.15	-29	-11.2	0.27	32	0.44	-134

Typical S-Parameters $(V_{CE} = 15 \text{ V, } I_C = 18 \text{ mA})$

	S ₁₁			S ₂₁			S ₁₂			\$22		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.		
100	0.62	-56	29,3	29.17	148	-40.0	0.01	69	0.90	-16		
200	0.59	-93	27,1	22.60	129	-35.4	0.02	66	0.77	-23		
300	0.57	-116	24,9	17.66	115	-34.0	0.02	50	0.67	-26		
400	0.55	-131	23.0	14.14	107	-31.7	0.03	55	0.62	-26		
500	0.54	-143	21.3	11.65	100	-32.0	0.03	47	0.58	-28		
600	0.54	-152	20.0	9.96	95	-30.8	0.03	48	0.56	-27		
700	0.53	-158	18.7	8.57	91	-30.0	0.03	51	0.55	-28		
800	0.53	-165	17.6	7.57	86	-29.1	0.04	52	0.54	-29		
900	0.52	-170	16.6	6.78	83	-28.6	0.04	- 57	0.53	-28		
1000	0.52	-175	15.8	6.16	79	-27.7	0.04	57	0.52	-29		
1500	0.52	167	12.4	4.16	65	-25.5	0.05	59	0.50	-37		
2000	0.51	152	10,0	3.16	53	-23.2	0.07	63	0.52	-42		
2500	0.54	139	8.2	2.57	42	-21.3	0.09	64	0.50	-51		
3000	0.56	127	6.7	2.17	30	-19.3	0.11	62	0.52	-61		
3500	0.61	115	5.5	1.89	19	-17.8	0.13	59	0.50	-68		
4000	0.62	106	4.4	1.66	- 8	-16.3	0.15	55	0.52	-80		
5000	0.74	89	2.7	1,36	-12	-13.6	0.21	45	0.47	-102		
6000	0.83	75	1.3	1.16	-31	-11.4	0.27	34	0.46	-130		

LOW COST, HIGH PERFORMANCE TRANSISTOR

Features

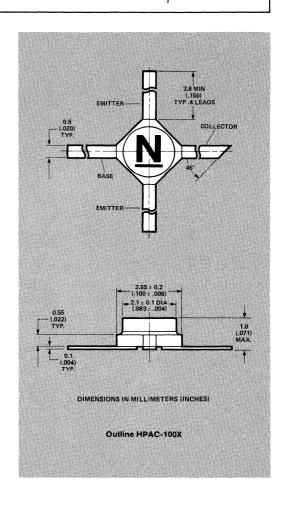
GUARANTEED NOISE FIGURE
2.2 dB Maximum F_{MIN} at 2 GHz
GUARANTEED ASSOCIATED GAIN
12.2 dB Minimum G_a at 2 GHz
HIGH OUTPUT POWER
19.0 dBm Typical P_{1dB} at 2 GHz
HIGH P_{1dB} GAIN
13.5 dB Typical G_{1dB} at 2 GHz
HIGH GAIN BANDWIDTH PRODUCT
6.0 GHz Typical f_T

LOW COST HERMETIC PACKAGE

Description

The HXTR-3645 is an NPN silicon bipolar transistor designed for use in low noise wide band amplifier or medium power oscillation applications requiring superior VHF, UHF, or microwave performance. Excellent device uniformities, performance, and reliability are produced by the ion implantation and self alignment techniques used in the fabrication of these devices. The transistor chip has a dielectric scratch protection over its active area.

The HXTR-3645 is supplied in the HPAC-100X, a rugged hermetic metal-ceramic package, capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(TCASE = 25°C)

Symbol	Parameter	Value
Vcво	Collector to Base Voltage	30 V
VCEO	Collector to Emitter Voltage	18 V
VEBO	Emitter to Base Voltage	1.5 V
lc	DC Collector Current	65 mA
Pt	Total Device Dissipation	600 mW
T.J	Junction Temperature	300°C
Tstg	Storage Temperature	-65°C to 150°C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device

- A OJC maximum of 170° C/W should be used for derating and junction temperature calculations (T_J = P_D x OJC + TCASE).
- A MTTF of 1 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at $T_{CASE} = 25^{\circ}C$

Symbol	Parameters and Test Conditions		MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at I _C = 100 μA		3001.1*	٧	30		
BVCEO	Collector-Emitter Breakdown Voltage at Ic = 15 mA	3011.1*	٧	18			
Ісво	Collector-Base Cutoff Current at V _{CB} = 15 V	3036.1**	nA			50	
ICEO	Collector-Emitter Leakage Current at VCE = 15 V	3041.1	nA			50	
hre	Forward Current Transfer Ratio at VCE = 10 V, IC = 10 m	nA	3076.1		55		175
fr	Gain Bandwidth Product at VCE = 10 V, IC = 10 mA		GHz		6,0		
FMIN	Minimum Noise Figure Voe = 10 V, Io = 10 mA	f = 500 MHz f = 1000 MHz f = 1500 MHz f = 2000 MHz		dB		1,2 1,2 1,4 1,7	1.9
Ga	Associated Gain VCE = 10 V, IC = 10 mA	f = 500 MHz f = 1000 MHz f = 1500 MHz f = 2000 MHz		dB	12.2	22.5 17.5 14.6 13.0	
PidB	Power Output at 1 dB Gain at 2000 MHz Compression, VcE = 15 V, Ic = 18 mA			dBm		19.0	
G1dB	Associated 1 dB Compressed Gain at 2000 MHz VCE = 15 V, IC = 18 mA			dB		13.5	
C _{12E}	Reverse Transfer Capacitance V _{CB} = 10 V, I _C = 0 mA	f= 1 MHz		pF		0.27	

^{*300} μ s wide pulse measurement \leq 2% duty cycle. **Measured under low ambient light conditions.

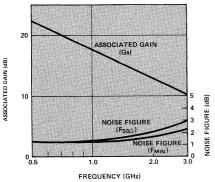


Figure 1. Typical Noise Figure and Associated Gain vs. Frequency at $V_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$.

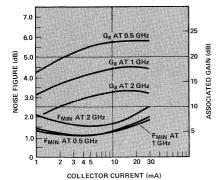


Figure 3. Typical F_{MIN} and Associated Gain (G_a) vs. Collector Current at $V_{CE}=10~V$.

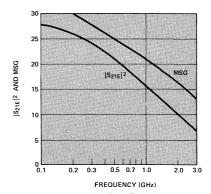


Figure 2. Typical $|S_{21E}|^2$, and Maximum Stable Gain (MSG) vs. Frequency at $V_{CE}=10~V$ and $I_C=10~mA$.

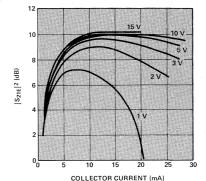


Figure 4. Typical $|S_{21E}|^2$ vs. Current at 2000 MHz.

Typical Noise Parameters $V_{\text{CE}} = 10 \text{ V, I}_{\text{C}} = 10 \text{ mA}$

Frequency (MHz)	F _{MIN} (dB)	F _{50Ω} (dB)	Mag.	o Ang.	R _n (ohms)
500	1.2	1.2	(50 Ω)	-	0
1000 2000	1.2	1.3 2.0	0.20 0.39	135 -177	7.3

Figure 5. Typical Power Output at 1 dB Compression Gain vs. Frequency.

Typical S-Parameters $(V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA})$

	S ₁₁			S ₂₁			S ₁₂			322
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.67	-43	27.6	23,92	155	-35.9	0.02	66	0.92	-14
200	0.63	-78	25.9	19,63	136	-33.2	0.02	70	0.81	-23
300	0.59	-103	24.1	15,94	121	-31.4	0.03	53	0.70	-28
400	0.57	-119	22.4	13.22	112	-30.2	0.03	52	0.64	-30
500	0.57	-132	20.9	11.11	105	-28.6	0.04	46	0.59	-32
600	0.55	-141	19.6	9,52	99	-28.4	0.04	49	0.56	-32
700	0.54	-149	18.4	8.30	94	-28.4	0.04	50	0.55	-32
800	0.53	-156	17.4	7.37	89	-28.0	0.04	49	0.53	-32
900	0.53	-162	16.4	6.61	86	-27.3	0.04	51	0.52	-32
1000	0,52	-168	15.6	6.00	83	-26.4	0.05	50	0.50	-34
1500	0.53	172	12.2	4.09	67	-24.7	0.06	55	0.47	-41
2000	0.50	155	9.8	3.11	54	-22.7	0.07	58	0.50	-45
2500	0.54	142	8.1	2.53	43	-20.8	0.09	59	0.47	-55
3000	0.55	130	6.6	2.14	- 32	-19.0	0.11	58	0.49	-64
3500	0.60	118	5.4	1.87	20	-17.4	0.14	56	0.47	-71
4000	0.61	108	4.3	1.63	10	-16.0	0.16	52	0.49	-83

Typical S-Parameters $(V_{CE} = 15 \text{ V}, I_C = 18 \text{ mA})$

	S ₁₁			S ₂₁			S ₁₂			S ₂₂		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.		
100 200	0.62 0.59	-56 -93	29.3 27.1	29.17 22.60	148 129	-40.0 -35.4	0.01 0.02	69 66	0.90 0.77	-16 -23		
300	0.57	-116	24.9	17.66	115	-34.0	0.02	50	0.67	-26		
400	0.55	-131	23.0	14.14	107	-31.7	0.03	55	0.62	-26		
500	0.54	-143	21.3	11.65	100	-32.0	0.03	47	0.58	-28		
600	0,54	-152	20.0	9.96	95	-30.8	0.03	48	0.56	-27		
700	0.53	-158	18.7	8.57	91	-30.0	0,03	51	0.55	-28		
800	0.53	-165	17.6	7.57	86	-29.1	0.04	52	0.54	-29		
900	0.52	-170	16.6	6.78	83	-28.6	0.04	57	0.53	-28		
1000	0.52	-175	15.8	6.16	79	-27.7	0,04	57	0.52	-29		
1500	0.52	167	12.4	4.16	65	-25.5	0.05	59	0.50	-37		
2000	0.51	152	10.0	3,16	53	-23.2	0.07	63	0.52	-42		
2500	0.54	139	8.2	2.57	42	-21.3	0.09	64	0.50	-51		
3000	0.56	127	6.7	2.17	30	-19.3	0,11	62	0.52	-61		
3500	0.61	115	5,5	1.89	19	-17.8	0.13	59	0.50	-68		
4000	0.62	106	4.4	1.66	8	-16.3	0.15	55	0,52	-80		

LOW COST, HIGH PERFORMANCE TRANSISTOR

Features

GUARANTEED NOISE FIGURE
3.4 dB Maximum F_{MIN} at 4 GHz

GUARANTEED ASSOCIATED GAIN 7.7 dB Minimum G_a at 4 GHz

HIGH OUTPUT POWER
17.5 dBm Typical P_{1dB} at 4 GHz

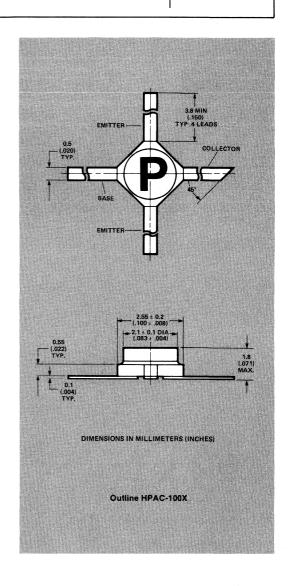
HIGH P_{1dB} GAIN 8.4 dB Typical G_{1dB} at 4 GHz HIGH GAIN BANDWIDTH PRODUCT 6.0 GHz Typical f_T

LOW COST HERMETIC PACKAGE

Description

The HXTR-3675 is an NPN silicon bipolar transistor designed for use in low noise wide band amplifier or medium power oscillation applications requiring superior VHF, UHF, or microwave performance. Excellent device uniformities, performance, and reliability are produced by the ion implantation and self alignment techniques used in the fabrication of these devices. The chip is provided with scratch protection over its active area.

The HXTR-3675 is supplied in the HPAC-100X, a rugged hermetic metal-ceramic package capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(T_{CASE} = 25° C)

Symbol	Parameter	Value
Vcвo	Collector to Base Voltage	30 V
VCEO	Collector to Emitter Voltage	18 V
VEBO	Emitter to Base Voltage	1.5 V
Ic.	DC Collector Current	65 mA
PT	Total Device Dissipation	600 mW
Tu	Junction Temperature	300°C
Tstg	Storage Temperature	-65°C to
	Section 1997 The Control of the Cont	+150°C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device

- 1. A Θ_{JC} maximum of 170° C/W should be used for derating and junction temperature calculations ($T_{J} = P_{D} \times \Theta_{JC} + T_{CASE}$).
- A MTTF of 1.0 x 107 hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at $T_{CASE} = 25^{\circ}C$

Symbol	Parameters and Test Conditions		MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at I _C = 100 μA		3001.1*	V	30		
BVceo	Collector-Emitter Breakdown Voltage at I _C = 15 mA		3011.1*	٧	18		
Ісво	Collector-Base Cutoff Current at V _{CB} = 15 V		3036.1**	nA			50
ICEO	Collector-Emitter Leakage Current at V _{CE} = 15 V	3041.1	nA			50	
hre	Forward Gurrent Transfer Ratio at VCE = 10 V, IC = 10 mA	-	3076.1		55		175
ft	Gain Bandwidth Product at V _{CE} = 10 V, I _C = 10 mA			GHz	1	6.0	
FMIN	f = 20	00 MHz 00 MHz 00 MHz	3246.1	dB		1,2 1.7 2.8	3.4
Ga	f = 20	00 MHz 00 MHz 00 MHz	3246.1	dB	7.7	17.7 13.0 8.3	
P _{1dB}	Power Output at 1 dB Compression at 4000 MHz Compression, VcE = 15 V, Ic = 18 mA		100 Sept. 1989.	dBm		17.5	to a second
G _{1dB}	Associated 1 dB Compressed Gain at 4000 MHz VcE = 15 V, Ic = 18 mA			dB	-	8.4	
C _{12E}	Reverse Transfer Capacitance f = V _{CB} = 10 V, I _C = 0 mA	1 MHz	_	pF	-	0.29	

^{*300} μ s wide pulse measurement \leq 2% duty cycle.

^{**}Measured under low ambient light conditions.

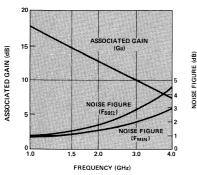


Figure 1. Typical Noise Figure and Associated Gain vs. Frequency at $V_{CE}=10\ V,\ I_{C}=10\ mA.$

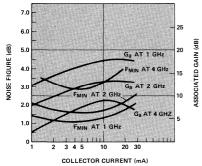


Figure 3. Typical F_{MIN} and Associated Gain (G_a) vs. Collector Current at $V_{CE}=10~V$.

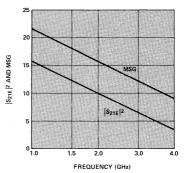


Figure 2. Typical $|S_{21E}|^2$ and Maximum Stable Gain (MSG) vs. Frequency at $V_{CE}=10~V$ and $I_{C}=10~mA$.

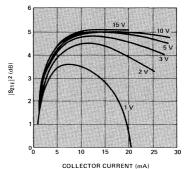


Figure 4. Typical|S_{21E}|² vs. Current at 4000 MHz.

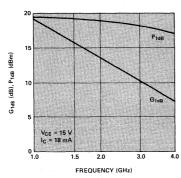


Figure 5. Typical Power Output at 1 dB Compression Gain vs. Frequency.

Typical Noise Parameters

 $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$

Frequency (MHz)	F _{MIN} (dB)	F _{SOΩ} (dB)	G _{MIN} (dB)	Mag.	o Ang.	R _n (ohms)
1000	1.2	1.3	17.7	0.2	135	6.5
2000	1.8	2.0	13.0	0.4	-177	2.9
4000	2.8	4.1	8.3	0.6	-117	21.5

Typical S-Parameters $_{(V_{CE}\,=\,10\;V,\;I_{C}\,=\,10\;mA)}$

	S	S ₁₁		S ₂₁		S	12	S ₂₂	
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
100	0.67	-43	27.6	23.9	155	0.02	66	0.92	-14
- 200	0.63	-78	25.9	19.6	136	0.02	70	0.81	-23
300	0.59	-103	24.0	15.9	121	0.03	53	0.70	-28
400	0.58	-119	22.4	13.2	112	0.03	52	0.64	-30
500	0.57	-132	20.9	11,1	105	0.04	46	0.59	-32
600	0.55	-141	19.6	9.5	_99	0.04	49	0.56	-32
700	0.54	-149	18.4	8.3	94	0.04	50	0.55	-32
800	0.53	-156	17.4	7.4	89	0.04	49	0.53	-32
900	0.53	-162	16.4	6.6	86	0.04	51	0.52	-32
1000	0.52	-168	15.6	6.0	83	0.05	50	0.50	-34
1500	0.53	172	12.3	4.1	67	0.06	55	0.47	-41
2000	0.50	155	9.8	3.1	54	0.07	58	0.50	-46
2500	0.54	142	8.0	2.5	43	0.09	59	0.47	-55
3000	0.55	130	6.4	2.1	32	0.11	58	0.49	-64
3500	0.60	118	5.6	1.9	20	0.14	56	0.47	-71
4000	0.61	108	4.1	1.6	10	0.16	52	0.48	-83
4500	0.68	96	3.5	1.5	-1	0.19	48	0.47	-89
5000	0.72	90	2.9	1.4	-10	0.21	43	0.44	-105
5500	0.76	80	2.3	1.3	-20	0.25	36	0.46	-116
6000	0.81	76	0.8	1.1	-29	0.27	32	0.44	-134
6500	0.78	69	0.2	1.0	-37	0.29	26	0.50	-148

Typical S-Parameters $(V_{CE} = 15 \text{ V}, I_C = 18 \text{ mA})$

	s	11		S ₂₁		s	12	s	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
100	0.62	-56	29.3	29.2	148	0.01	69	0.90	-16
200	0.59	-93	27.1	22.6	129	0.02	66	0.77	-23
300	0.57	-116	25.0	17.7	115	0.02	50	0.67	-26
400	0.55	-131	23.0	14.1	107	0.03	55	0.62	-26
500	0.54	-143	21.3	11.6	100	0.03	47	0.58	-28
600	0.54	-152	20.0	10.0	95	0.03	48	0.56	-27
700	0.53	-158	18.7	8.6	91	0.03	51	0.55	-28
800	0.53	-165	17.6	7.6	86	0.04	52	0.54	-29
900	0.52	-170	16.7	6.8	83	0.04	57	0.53	-28
1000	0.52	-175	15.9	6.2	79	0.04	57	0.52	-29
1500	0.52	167	12.5	4.2	65	0.05	59	0.50	-37
2000	0.51	152	10.1	3.2	53	0.07	63	0.52	-42
2500	0.54	139	8.3	2.6	42	0.09	64	0.50	-51
3000	0.56	127	6.9	2.2	30	0.11	62	0.52	-61
3500	0.61	115	5.6	1.9	19	0.13	59	0.50	-68
4000	0.62	106	4.6	1.7	8	0.15	55	0.52	-80
4500	0.69	94	3.5	1.5	-2	0.18	51	0.50	-87
5000	0.74	89	2.9	1.4	-12	0.21	45	0.47	-102
5500	0.77	78	2.3	1.3	-22	0.24	38	0.49	-113
6000	0.83	75	1.6	1.2	-31	0.27	34	0.46	-130
6500	0.78	67	0.1	1.0	-39	0.28	28	0.52	-146

GENERAL PURPOSE OSCILLATOR TRANSISTOR

HXTR-4101

Features

GUARANTEED OUTPUT POWER 19.0 dBm Minimum at 4.3 GHz

HIGH FREQUENCY PERFORMANCE 12 dBm Typical at 8 GHz

USABLE TO 10 GHz

CHARACTERIZED FOR OSCILLATOR
APPLICATIONS UP TO 10 GHz

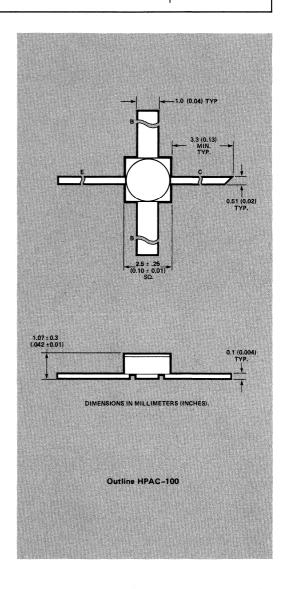
HERMETIC PACKAGE

COMMON BASE CONFIGURATION

Description

The HXTR-4101 is an NPN bipolar transistor designed for consistent high oscillator output. Each device is tested for specified oscillator performance at 4.3 GHz. The device utilizes ion implantation and self alignment techniques in its manufacture. The chip is provided with dielectric scratch protection over its active area.

The HXTR-4101 is supplied in the HPAC-100, a rugged metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(T_{CASE} = 25°C)

Symbol	Parameter	Limit
Vсво	Collector to Base Voltage	30V
VCEO	Collector to Emitter Voltage	207
VEBO	Emitter to Base Voltage	1,5V
lc .	DC Collector Current	70 mA
PT	Total Device Dissipation	900 mW
Tj	Junction Temperature	300°C
Tstg	Storage Temperature	-65°C to
	And the second second second second	250° C
	Lead Temperature	
1000	(Soldering 10 seconds each lead)	+250° C

*Operation in excess of any one of these conditions may result in permanent damage to this device.

- 1. A Θ_{JC} maximum of 210° C/W should be used for derating and junction temperature calculations (T_J = P_D x Θ_{JC} + TCASE).
- A MTTF of 1.0 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters and Test Conditions		Test MIL-STD-750	Units	Min.	Тур.	Max.
BVCES	Collector-Emitter Breakdown Voltage I _C =100µA		3011.1*	٧	30		
Iceo	Collector-Emitter Leakage Current at V _{CE} =15V		3041.1	nA			500
Ісво	Collector Cutoff Current at V _{CB} =15V	- market	3036.1	nA			100
hre	Forward Current Transfer Ratio V _{CE} =15V, I _C =15mA		3076.1*		50	120	220
Posc	Oscillator Output Power VcB =15V, Ic = 30mA	f = 3 GHz 4.3 GHz 6 GHz 8 GHz		dBm	19.0	21.5 20.5 17.0 12.0	
N/C	Phase Noise to Carrier Ratio at 1 KHz from the Carrier (SSB), f = 4.3 GHz		100	dBc/Hz		-50	

^{*300} µs wide pulse measurement ≤2% duty cycle.

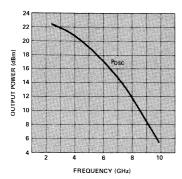


Figure 1. Typical Tuned Power Output vs. Frequency at $V_{CB} = 15 \text{ V}$, $I_C = 30 \text{ mA}$.

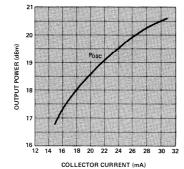


Figure 2. Typical Oscillator Power vs. Current for $V_{CB} = 15 \ V$ at 4.3 GHz.

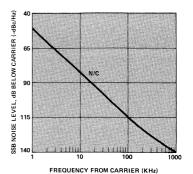


Figure 3. Typical Phase Noise to Carrier Ration (N/C) vs. Frequency from Carrier at 4.3 GHz, $V_{CB} = 15 \text{ V}$, $I_C = 30 \text{ mA}$.

Typical S - Parameters $v_{CB} = 15 \text{ V}, I_C = 30 \text{ mA}$

	S ₁₁		s	21	S	12	S	22
Freq. (MHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
1000	0.93	161	1.93	-29	0.011	127	1.01	-15
1500	0.94	153	1.92	-44	0.023	126	1.04	-31
2000	0.96	144	1.95	-59	0.039	120	1.06	-45
2500	0.98	134	1.97	-76	0.061	113	1.10	-59
3000	0.99	123	1,96	-94	0.086	105	1.12	-74
3500	1.01	115	1.95	-114	0.117	93	1.16	-91
4000	1.02	106	1.87	-133	0.154	84	1.19	-108
4500	1.01	96	1.79	-155	0,186	70	1.20	-127
5000	0.98	88	1.65	-174	0.217	58	1.21	-143
6000	0.91	74	1.32	144	0.245	35	1.10	-176
7000	0.85	61	1.06	109	0.267	17	0.99	157
8000	0.78	49	0.87	74	0.298	1	0.89	135
9000	0.76	44	0.76	60	0.238	-10	0.93	131
10000	0.72	27	0.72	29	0.288	-24	0.89	113
11000	0.70	6	0.68	5	0.302	-38	0.84	102
12000	0.64	-24	0.67	-25	0.320	-58	0.82	92

LINEAR POWER TRANSISTOR

2N6701 (HXTR-5101)

Features

HIGH OUTPUT POWER
23 dBm Typical P_{1dB} at 2 GHz
22 dBm Typical P_{1dB} at 4 GHz

HIGH P_{1dB} GAIN
13 dB Typical G_{1dB} at 2 GHz
7.5 dB Typical G_{1dB} at 4 GHz

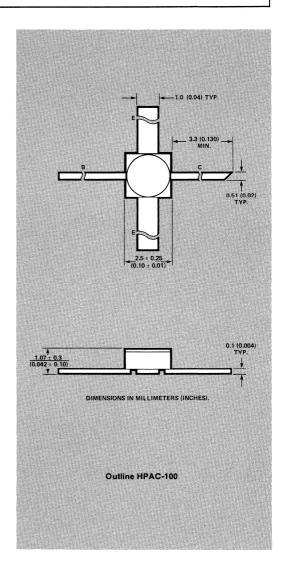
HIGH POWER-ADDED EFFICIENCY
HERMETIC PACKAGE

Description/Applications

The 2N6701 (HXTR-5101) is an NPN bipolar transistor designed for high output power and gain up to 5 GHz. To achieve excellent uniformity and reliability, the manufacturing process utilizes ion implantation and self alignment techniques. The chip has a dielectric scratch protection over its active area and Ta₂N ballast resistors for ruggedness.

The superior gain, power, and distortion performance of the 2N6701 commend it for applications in radar, ECM, space, and commercial and military telecommunications. The 2N6701 features both guaranteed power output and associated gain at 1 dB gain compression.

The 2N6701 is supplied in the HPAC-100, a metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

 $(T_{CASF} = 25^{\circ}C)$

Symbol	Parameter	Limit
Vсво	Collector to Base Voltage	45V
VCEO	Collector to Emitter Voltage	27V
VEBO	Emitter to Base Voltage	40
Ic	DC Collector Current	100 mA
Pr	Total Device Dissipation	1.1 W
TJ	Junction Temperature	300°C
TSTG	Storage Temperature	-65°C to
100	the second second second second second second	200°C
-	Lead Temperature	
	(Soldering 10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

- A O_{JC} maximum of 210° C/W should be used for derating and junction temperature calculations (T_J = P_D x O_{JC} + TCASE)
- A MTTF of 3.5 x 10⁶ hours will be met or exceeded when the junction temperature is maintained under T_J = 125°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108, "Reliability Performance of Bipolar Transistors".

Symbol	Parameters and Test Conditions	Test MIL-STD-750	Units	Min.	Тур.	Max
ВУсво	Collector-Base Breakdown Voltage at I _C = 3mA	3001.1*	V	40 -		
BVCEO	Collector-Emitter Breakdown Voltage at Ic = 15mA	3011.1*	٧	24		
BVEBO	Emitter-Base Breakdown Voltage at I _B = 30µA	3026.1*	٧	3.3		
IEBO	Emitter-Base Leakage Current at VEB=2V	3061.1	μА			2
Ices	Collector-Emitter Leakage Current at VcE=32V	3041.1	nA			200
Ісво	Collector-Base Leakage Current at V _{CB} =20V	3036.1	nA			100
hfE	Forward Current Transfer Ratio at V _{CE} =18V, i _C = 30mA	3076.1*		15	40	75
PidB	Power Output at 1dB Gain Compression = 1=2GHz 4GHz		dBm	21.0	23.0 22.0	
G _{1dB}	Associated 1dB Compressed Gain 2GHz 4GHz		dB	6.5	13 7.5	
PSAT	Saturated Power Output (8dB Gain) 2GHz (3dB Gain) 4GHz		dBm		25.5 25.0	
η	Power-Added Efficiency 2GHz at 1dB Compression 4GHz		%		35 24	
IP ₃	Third Order Intercept Point 4GHz Vc=18V, Ic=30mA		dBm		31	

^{*300}µs wide pulse measurement at ≤2% duty cycle.

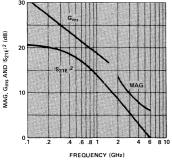


Figure 1. Typical MAG, Maximum Stable Gain (MSG), and $|S_{21}E|^2$, vs. Frequency at $V_{CE}=18~V$, $I_{C}=30~mA$.

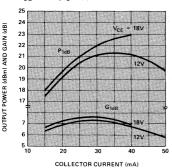


Figure 4. Typical P_{1dB} Linear Power and Associated 1 dB Compressed Gain vs. Current at $V_{CE} = 12$ and 18 V at 4 GHz.

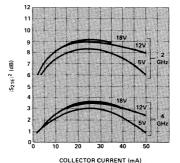


Figure 2. Typical |S_{21E}|² vs. Current at 2 and 4 GHz.

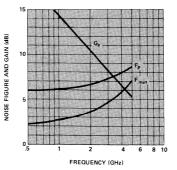


Figure 5. Typical Noise Figure (FMIN) and Associated Gain (G_a) when tuned for Minimum Noise vs. Frequency at $V_{CE} = 18 \text{ V}$, $I_C = 10 \text{ mA}$. Typical Noise Figure (Fp) when tuned for Max P_{1dB} at $V_{CE} = 18 \text{ V}$, $I_C = 30 \text{ mA}$.

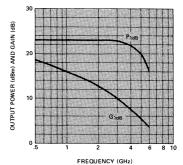


Figure 3. Typical P_{1dB} Linear Power and Associated 1 dB Compressed Gain vs. Frequency at $V_{CE}=18\ V,\,I_C=30\ mA.$

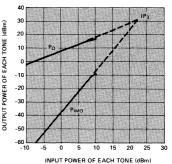


Figure 6. Typical Two Tone 3rd Order Intermodulation Distortion at 2 GHz for a frequency separation of 5 MHz at $V_{CE}=18~V, lc=30~mA.$

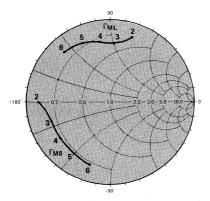


Figure 7. Typical Γ_{MS} , Γ_{ML} , (calculated from the average S-parameters) in the 2 to 6GHz frequency range, at $V_{CE}=18V$, $I_{C}=30mA$

Typical S-Parameters VCE = 18V, IC = 30mA

	S ₁₁			S ₂₁			S ₁₂			S ₂₂	
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	
100	0.80	-19	20.6	10.7	165	-37	0.01	77	0.98	-8	
200	0.78	-37	20.1	10.2	154	-31	0.03	67	0.94	-15	
300	0.75	-53	19.5	9.44	143	-28	0.04	60	0.88	-21	
400	0.72	-68	18.7	8.63	133	-27	0.05	53	0.83	-26	
500	0.68	-81	17.9	7.87	124	-26	0.05	47	0.78	-30	
600	0.66	-92 -	17.0	7.15	117	-25	0.06	42	0.73	-33	
700	0.64	-102	16.2	6.52	110	-24	0.06	39	0.69	-36	
800	0.62	-111	15.5	5.96	104	-24	0.07	36	0.66	-38	
900	0.61	-119	14.8	5.49	99	-23	0.07	33	0.64	-41	
1000	0.60	-126	14.1	5.08	94	-23	0.07	31	0.61	-43	
1500	0.56	-151	11.2	3.64	75	-23	0.08	25	0.55	-51	
2000	0.55	-169	8.9	2.80	59	-22	0.08	22	0.52	-61	
2500	0.56	179	7.2	2.29	45	-21	0.09	21	0.53	-72	
3000	0.55	168	5.7	1.93	33	-21	0.09	21	0.52	-79	
3500	0.56	158	4.5	1.69	21	-20	0.10	20	0.55	-89	
4000	0.54	148	3.5	1.50	10	-19	0.11	19	0.58	-96	
4500	0.54	137	2.5	1.33	0	-19	0.11	18	0.58	-106	
5000	0.52	128	1.6	1.21	-11	-18	0.13	16	0.62	-113	
5500	0.54	115	1.0	1.12	-23	-17	0.14	14	0.60	-122	
6000	0.54	108	0.0	1.01	-32	-17	0.15	11	0.64	-132	

Typical S-Parameters V_{CE} = 15V, I_C = 15mA

	S ₁₁			S ₂₁			S ₁₂			S ₂₂
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang
100	0.80	-18	19.4	9.35	166	-37	0.01	78	0.98	-7
200	0.78	-35	19.1	9.07	155	-31	0.02	69	0.95	-14
300	0.76	-50	18.5	8.44	145	-28	0.03	61	0.91	-20
400	0.73	-64	17.8	7.79	135	-26	0.04	55	0.86	-25
500	0.69	-77	17.1	7.16	127	-25	0.05	49	0.81	-29
600	0.67	-88	16.3	6.56	119	-24	0.06	44	0.76	-32
700	0.64	-97	15,5	6.02	113	-23	0.06	40	0.72	-35
800	0.62	-107	14.8	5.54	107	-23	0.06	37	0.69	-38
900	0.60	-115	14.2	5.13	101	-23	0.07	34	0.66	-40
1000	0.60	-122	13.5	4.76	96	-23	0.07	32	0.63	-43
1500	0.57	-148	10.8	3,47	76	-22	0.08	24	0.57	-53
2000	0.55	-166	8.6	2.69	60	-21	0.08	21	0.54	-63
2500	0.56	-178	6.9	2.21	46	-21	0.09	19	0.55	-75
3000	0.56	171	5.1	1.80	36	-20	0.09	21	0.50	-85
3500	0.56	160	4.3	1.65	21	-20	0.10	18	0.56	-91
4000	0.53	151	3.3	1.47	10	-19	0.11	18	0.59	-99
4500	0.53	141	2.3	1.30	0	-19	0.11	17	0.59	-108
5000	0.50	130	1.5	1.18	-10	-18	0.12	15	0.62	-116
5500	0.52	118	0.8	1.10	-22	-17	0.14	13	0.61	-124
6000	0.53	110	0.0	0.99	-31	-16	0.15	11	0.64	-135

LINEAR POWER TRANSISTOR

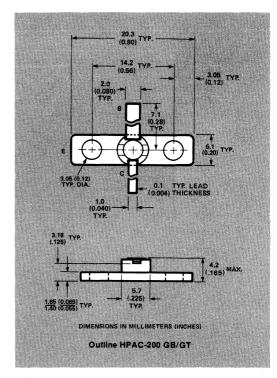
HXTR-5102

Features

HIGH OUTPUT POWER
29 dBm Typical P_{1dB} at 2 GHz
27.5 dBm Typical P_{1dB} at 4 GHz

HIGH P_{1dB} GAIN 11.5 dB Typical G_{1dB} at 2 GHz 7 dB Typical G_{1dB} at 4 GHz

HIGH POWER-ADDED EFFICIENCY


HERMETIC FLANGE PACKAGE

Description/Applications

The HXTR-5102 is an NPN bipolar transistor designed for high output power and gain up to 5 GHz. To achieve excellent uniformity and reliability, the manufacturing process utilizes ion implantation and self-alignment techniques. The chip has a dielectric scratch protection over its active area and Ta2N ballast resistors for ruggedness. A silicone conformal coating protects the chip and matching network.

The superior power, gain and distortion performance of the HXTR-5102 commend it for use in broad and narrowband commercial and military telecommunications, radar and ECM applications. Additionally, its partial internal matching makes it ideal for broad bandwidth designs in the 2 to 5 GHz frequency range with minimal sacrifice of output power and gain.

The HXTR-5102 is supplied in the HPAC-200GB/GT, a metal/ceramic hermetic package with a Be0 heat conductor, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings*

(TCASE = 25°C)

Symbol	Parameter	Limit
Vсво .	Collector to Base Voltage	45V
VCEO	Collector to Emitter Voltage	27V
VEBO	Emitter to Base Voltage	4V
lo	DC Collector Current	250 mA
Pt	Total Device Dissipation	4W
TJ	Junction Temperature	300°C
TSTG	Storage Temperature	-65° C to
	and the second second second second second	200°C
-	Lead Temperature	
	(Soldering 10 seconds each lead)	+250° C

*Operation in excess of any one of these conditions may result in permanent damage to this device.

- A OJC maximum of 55° C/W should be used for derating and junction temperature calculations (TJ = PD x OJC + TCASE).
- A MTTF of 3.5 x 10⁶ hours will be met or exceeded when the junction temperature is maintained under T_J = 125° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters and Test Conditions		Test MIL-STD-750	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at IC=	10 mA	3001.1*	V	40		
BVCEO	Collector-Emitter Breakdown Voltage at Id	c=50 mA	3011.1*	V	24		
BVEBO	Emitter-Base Breakdown Voltage at I _B =10	10 μΑ	3026.1*	V	3.3		
IEBO	Emitter-Base Leakage Current at VEB=2 V		3061.1	μА	-		5
ICES	Collector-Emitter Leakage Current at VCE	=32 V	3041.1	nA			200
Ісво	Collector-Base Leakage Current at VCB=2	3036.1	nA			100	
hre	Forward Current Transfer Ratio at V _{CE} =18 I _C =110 mA	3 V,	3076.1*	10 (10)	15	40	75
PidB	Power Output at 1dB Gain Compression	f=2 GHz 4 GHz		dBm	26.5	29.0 27.5	
G _{1dB}	Associated 1dB Compressed Gain	2 GHz 4 GHz		dB	6.0	11.5 7.0	
PSAT	Saturated Power Output 8 dB Gain 3 dB Gain	2 GHz 4 GHz		dBm	-	31.0 29.5	
η	Power-Added Efficiency at 1 dB Compression	2 GHz 4 GHz		%		37 23	4.4
IP ₃	Third Order Intercept Point VCE=18 V. IC=110 mA			dBm		36	

*300 µs wide pulse measurement at ≤2% duty cycle.

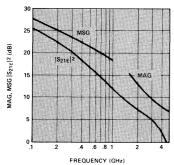


Figure 1. Typical MAG, Maximum Stable Gain (MSG) and $\left|S_{21E}\right|^2$ vs. Frequency at V_{CE} = 18 V, I_C = 110 mA.

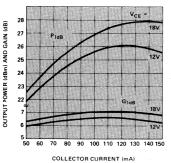


Figure 4. Typical P_{1dB} Linear Power and Associated 1 dB Compressed Gain vs. Current at $V_{CE} = 12$ and 18 V at 4 GHz.

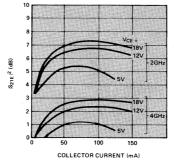


Figure 2. Typical $|S_{21E}|^2$ vs. Current at 2 and 4 GHz.

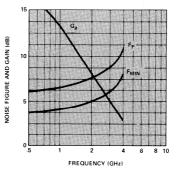


Figure 5. Typical Noise Figure (F_{min}) and Associated Gain (G_a) when tuned for Minimum Noise vs. Frequency at $V_{CE}=18$ V, $I_C=25$ mA. Typical Noise Figure (F_p) when tuned for Max P_{1dB} at $V_{CE}=18$ V, $I_C=110$ mA.

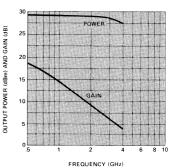
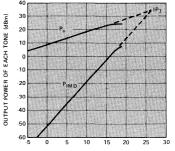



Figure 3. Typical P_{1dB} Linear Power and Associated 1 dB Compressed Gain vs. Frequency at $V_{CE}=18$ V, $I_{C}=110$ mA.

INPUT POWER OF EACH TONE (dBm)

Figure 6. Typical Two Tone 3rd Order Intermodulation Distortion at 4 GHz for a frequency separation of 5 MHz at VCE = 18 V, IC = 110 mA.

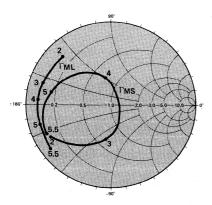


Figure 7. Typical $\Gamma_{MS},\,\Gamma_{ML}$ (calculated from the average S-parameters) in the 2 to 5.5GHz frequency range, for VCE = 18V, IC = 110mA.

Typical S-Parameters $v_{CE} = 18 \text{ V}, I_C = 110 \text{ mA}$

	S	11		S ₂₁			S ₁₂		9	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang
100	0.55	-74	25.4	18.60	146	-31	0.03	56	0.85	-29
200	0.65	-109	22.7	13.60	123	-28	0.04	39	0.68	-47
300	0.70	-134	20.8	10.90	108	-27	0.05	28	0.55	-59
400	0.72	-144	18.6	8.47	97	-26	0.05	21	0.48	-65
500	0.74	-158	17.2	7.22	88	-26	0.05	17	0.42	-74
600	0.73	-160	15.6	5.99	81	-25	0.05	13	0.41	-75
700	0.74	167	14.6	5.39	76	-25	0.05	-11	0.39	-79
800	0.74	-170	13.4	4.66	69	-25	0.06	8	0.39	-82
900	0.74	-175	12.7	4.32	64	-25	0.06	8	0.38	86
1000	0.74	-178	11.8	3.91	59	-25	0.06	7	0.37	-92
1500	0.71	166	9.0	2.82	34	-24	0.06	-2	0.43	-107
2000	0.64	153	7.3	2.32	10	-23	0.07	-8	0.51	-119
2500	0.52	140	6.3	2.07	-17	-22	0.08	-22	0.61	-133
3000	0.32	129	5.4	1.86	-49	-21	0.09	-42	0.73	-148
3500	0.15	158	3.8	1,55	-83	-20	0.09	-67	0.77	-168
4000	0.32	-145	2.8	1.38	-113	-22	0.08	-98	0.80	-177
4500	0.52	-158	0.0	1.00	-142	-24	0.06	132	0.82	17
5000	0.70	176	-1.9	0.81	-170	-28	0.04	50	0.87	159
5500	0.78	155	-3.0	0.71	161	-28	0.04	85	0.83	142
6000	0.85	119	-3.9	0.64	121	-19	0.11	16	0.93	121

LINEAR POWER TRANSISTOR

2N6741 (HXTR-5103)

Features

HIGH OUTPUT POWER
23 dBm Typical P_{1dB} at 2 GHz
22 dBm Typical P_{1dB} at 4 GHz

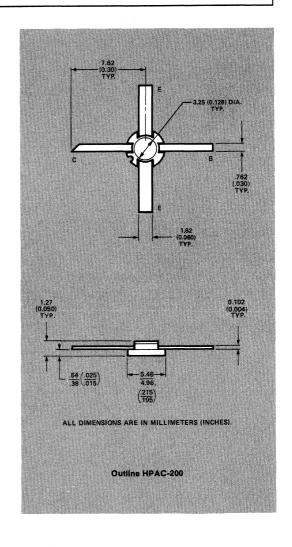
HIGH P_{1dB} GAIN
11 dB Typical G_{1dB} at 2 GHz
7 dB Typical G_{1dB} at 4 GHz
HIGH POWER-ADDED EFFICIENCY
HERMETIC PACKAGE

Description/Applications

The HXTR-5103 is an NPN bipolar transistor designed for high gain and linear output power up to 5 GHz. To achieve excellent uniformity and reliability, the manufacturing process utilizes ion implantation and self alignment techniques. The chip has a dielectric scratch protection over its active area and TayN ballast resistors for ruggedness.

The superior power, gain and distortion performance of the HXTR-5103 commend it for use in RF and IF applications in radar, ECM, space, and other commercial and military communications.

The HXTR-5103 utilizes the HPAC-200, a metal/ceramic hermetic package with a Be0 heat conductor, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(TCASE = 25°C)

Symbol	Parameter	Limit
Vcво	Collector to Base Voltage	45V
VCEO	Collector to Emitter Voltage	27V
VEBO	Emitter to Base Voltage	4.0V
lc	DC Collector Current	100 mA
Pt	Total Device Dissipation	1.4 W
TJ	Junction Temperature	300°C
Targ	Storage Temperature	250° C
	Lead Temperature	
	(Soldering 10 seconds each lead)	+250°C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

- A O_{JC} maximum of 125°C/W should be used for derating and junction temperature calculations (T_J = P_D x O_{JC} + TCASE).
- A MTTF of 3.5 x 10⁶ hours will be met or exceeded when the junction temperature is maintained under T_J = 125° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters and Test Conditions		Test MIL-STD-750	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at Ic=3mA		3001.1*	V	40		
BVcEo	Collector-Emitter Breakdown Voltage at Ic=19	5mA	3011.1*	٧	24		
BVEBO	Emitter-Base Breakdown Voltage at I _B = 30μA		3026.1*	٧	3.3		
lebo	Emitter-Base Leakage Current at VEB=2V		3061.1	μΑ			2
Ices	Collector-Emitter Leakage Current at VCE=32	V	3041.1	nA			200
Ісво	Collector-Base Leakage Current at V _{CB} =20V		3036.1	nA			100
hre	Forward Current Transfer Ratio at V _{CE} =18V, I _C =30mA		3076.1*	100	15	40	75
PidB	Power Output at 1dB Gain Compression	f= 2GHz		dBm	22.0	23.0	
G _{1dB}	Associated 1dB Compressed Gain	2GHz		dB	9.5	11.0	
Psat	Saturated Power Output (Gain=5dB)	2GHz		dBm		25.0	
η	Power-Added Efficiency at 1dB Compression	2GHz		%		34	
IP ₃	Third Order Intercept Point VcE=18V, Ic=30mA	2GHz		dBm	300	32	

^{*300}µs wide pulse measurement at ≤2% duty cycle.

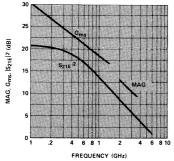


Figure 1. Typical $G_{a(m_ax)}$, Maximum Stable Gain (G_{ms}) , and $|S_{21E}|^2$ vs. Frequency at $V_{CE}=18~V$, $I_C=30~mA$.

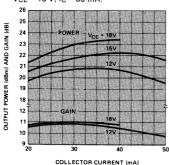


Figure 4. Typical P_{1dB} Linear Output Power and Associated 1 dB Compressed Gain vs. Current at 2 GHz.

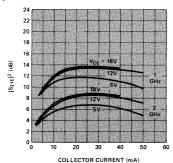


Figure 2. Typical $|S_{21E}|^2$ vs. Current at

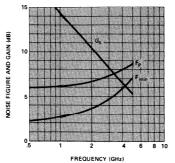


Figure 5. Typical Noise Figure (Fmin) and Associated Gain (G_a) vs. Frequency when tuned for Minimum Noise at $VcE=18\ V$, $IC=10\ mA$. Typical Noise Figure (F_p) when tuned for Max PtdB at $VcE=18\ V$, $IC=30\ mA$.

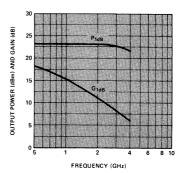
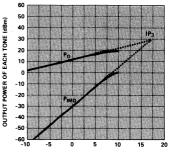



Figure 3. Typical P_{1dB} Linear Power and Associated 1 dB Compressed Gain vs. Frequency at $V_{CE}=18~V,~I_{C}=30~mA$.

INPUT POWER OF EACH TONE (dBm)

Figure 6. Typical Two Tone 3rd Order Intermodulation Distortion at 2 GHz for a frequency separation of 5 MHz at VCE = 18 V, IC = 30 mA.

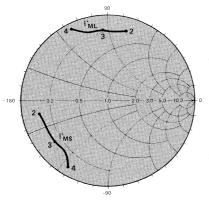


Figure 7. Typical $\Gamma_{MS},\,\Gamma_{ML}$ (Calculated from the Average S-Parameters) in the 2 to 4GHz Frequency Range for VCE = 18V, IC = 30mA.

Typical S-Parameters $v_{CE} = 18V$, $I_C = 30 \text{mA}$

	S	11		S ₂₁			S ₁₂		S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.74	-20	20.7	10.90	165	-37	0.01	79	0.98	-9
200	0.71	-40	20.3	10.30	152	-32	0.03	68	0.94	-17
300	0.68	-57	19.6	9.49	140	-29	0.04	62	0.89	-23
400	0.65	-72	18.7	8.65	130	-27	0.04	55	0.84	-28
500	0.62	-86	17.8	7.77	121	-26	0.05	49	0.79	-33
600	0.60	-97	16.9	7.01	113	-25	0.06	44	0.75	-37
700	0.58	-108	16.2	6.43	106	-25	0.06	41	0.71	-40
800	0.55	-116	15.4	5.87	100	-24	0.06	38	0.68	-42
900	0.54	-124	14.6	5.38	94	-24	0.07	35	0.65	-44
1000	0.52	-131	13.8	4.91	88	-23	0.07	33	0.63	-46
1500	0.49	-159	11.0	3.53	66	-22	0.08	25	0.58	-59
2000	0.47	-179	8.8	2.77	48	-21	0.09	22	0.56	-67
2500	0.47	165	7.1	2.27	32	-20	0.10	18	0.56	-81
3000	0.45	151	5.8	1.95	17	-19	0.11	15	0.59	-90
3500	0.45	138	4.7	1.71	2	-18	0.12	10	0.59	-103
4000	0.42	123	3.7	1.54	-11	-17	0.14	4	0.64	-111
4500	0.41	110	3.2	1.44	-24	-16	0.16	1	0.65	-121
5000	0.39	89	2.2	1.29	-38	-15	0.17	-6	0.69	-131
5500	0.39	74	1.4	1.18	-53	-14	0.19	-12	0.69	-139
6000	0.37	55	0.7	1.09	-64	-13	0.22	-17	0.69	-148

Typical S-Parameters $v_{CE} = 15V$, $I_C = 15mA$

	S-	11		S ₂₁			S ₁₂		S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.74	-19	19.1	9.05	164	-37	0.01	81	0.98	-8
200	0.70	-37	18.8	8.76	152	-31	0.03	68	0.94	-15
300	0.67	-54	18.2	8.16	141	-28	0.04	60	0.90	-21
400	0.63	-69	17.5	7.52	130	-27	0.05	53	0.85	-26
500	0.60	-83	16.8	6.90	121	-26	0.05	48	0.80	-31
600	0.58	-95	16.0	6.32	113	-25	0.06	43	0.76	-35
700	0.57	-105	15.2	5.78	107	-24	0.06	40	0.73	-38
800	0.55	-113	14.5	5.29	101	-24	0.07	37	0.70	-40
900	0.54	-121	13.8	4.88	95	-23	0.07	34	0.67	-43
1000	0.52	-128	13.0	4.48	89	-23	0.07	31	0.65	-45
1500	0.48	-156	10.2	3.23	66	-22	0.08	25	0.60	-55
2000	0.46	-177	8.0	2.51	48	-21	0.09	21	0.56	-65
2500	0.46	167	6.3	2.00	31	-20	0.10	18	0.57	-77
3000	0.45	153	5.0	1.78	16	-19	0.11	16	0.59	-86
3500	0.44	140	3.8	1.56	0	-18	0.12	12	0.60	-98
4000	0.43	126	2.8	1.38	-13	-17	0.14	8	0.64	-106
4500	0.41	112	1.9	1.24	-26	-16	0.15	4	0.64	-114
5000	0.38	93	1.0	1.12	-40	-15	0.17	-1	0.68	-123
5500	0.39	74	0.8	1.09	-55	-14	0.20	-6	0.70	-130
6000	0.37	56	-0.3	0.96	-67	-13	0.23	-12	0.69	-139

LINEAR POWER TRANSISTOR

HXTR-5104

Features

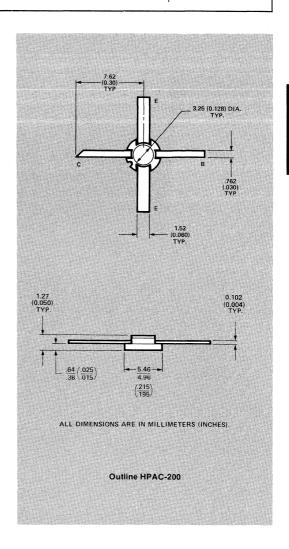
HIGH OUTPUT POWER
29 dBm Typical P_{1dB} at 2 GHz
HIGH P_{1dB} GAIN
9 dB Typical G_{1dB} at 2 GHz
LOW DISTORTION
HIGH POWER-ADDED EFFICIENCY
HERMETIC PACKAGE

Description/Applications

The HXTR-5014 is an NPN bipolar transistor designed for high gain and linear output power up to 4 GHz. To achieve excellent uniformity and reliability, the manufacturing process utilizes ion implantation and self-alignment techniques. The chip has a dielectric scratch protection over its active area and TaxN ballast resistors for ruggedness.

The superior power, gain and distortion performance of the HXTR-5104 commend it for use in RF and IF applications in radar, ECM, space, and other commercial and military communications.

The HXTR-5104 utilizes the HPAC-200, a metal/ceramic hermetic package with a Be0 heat conductor, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(TCASE = 25°C)

Symbol	Parameter	Limit
Vсво	Collector to Base Voltage	45V
VCEO	Collector to Emitter Voltage	27V
VEBO	Emitter to Base Voltage	4V
lo	DC Collector Current	250 mA
PT	Total Device Dissipation	4 W
TJ	Junction Temperature	300°C
TstG	Storage Temperature	−65° C to
	-	200° C
_	Lead Temperature	
	(Soldering 10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

- A Θ_{JC} maximum of 55° C/W should be used for derating and junction temperature calculations (T_J = P_D x Θ_{JC} + T_{CASE}).
- A MTTF of 3.5 x 10⁶ hours will be met or exceeded when the junction temperature is maintained under T_J = 125°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters and Test Conditions	Test MIL-STD-750	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at Ic=10mA	3001.1*	V	40		
BVCEO	Collector-Emitter Breakdown Voltage at Ic=50mA	3011.1*	٧	24		
BVEBO	Emitter-Base Breakdown Voltage at I _B =100μA	3026.1*	V	3.3		
leso.	Emitter-Base Leakage Current at VEB=2V	3061.1	μА			10
ICES	Collector-Emitter Leakage Current at VcE=32V	3041.1	nA			200
Ісво	Collector-Base Leakage Current at VcB=20V	3036.1	nA			100
hre	Forward Current Transfer Ratio at VcE=18V, Ic=110mA	3076.1*		15	40	75
PidB	Power Output at 1dB Gain Compression f= 2GH		dBm	28.0	29.0	
G _{1dB}	Associated 1dB Compressed Gain 2GI	Hz	dB	8.0	9.0	
PSAT	Saturated Power Output (Gain=5dB) 2GI	-lz	dBm		31.0	
η	Power-Added Efficiency at 1dB Compression 2GI	Hz	%	-	35	
IP ₃	Third Order Intercept Point VCE=18V, IC=110mA 2G	Hz	dBm		37	

*300µs wide pulse measurement at ≤2% duty cycle.

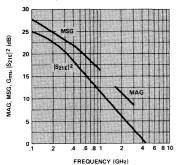
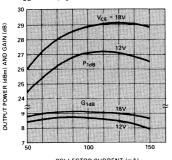



Figure 1. Typical MAG, Maximum Stable Gain (MSG) and $IS_{21E}I^2$ vs. Frequency at $V_{CE}=18$ V, $I_C=110$ mA.

COLLECTOR CURRENT (mA)
Figure 4. Typical P_{1dB} Linear
Power and Associated 1 dB
Compressed Gain vs. Current at
V_{CE} = 12 and 18 V at 2 GHz.

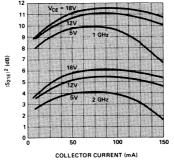


Figure 2. Typical $|S_{21E}|^2$ vs. Current at 1 and 2 GHz.

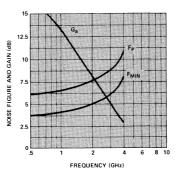


Figure 5. Typical Noise Figure (Fmin) and Associated Gain (G_a) vs. Frequency when tuned for Minimum Noise at VcE = 18 V, Ic = 25 mA. Typical Noise Figure (F_p) when tuned for Max P_{1dB} at VcE = 18 V, Ic = 110 mA

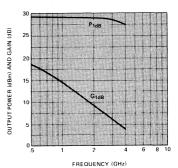


Figure 3. Typical P_{1dB} Linear Power and Associated 1 dB Compressed Gain vs. Frequency at $V_{CE}=18$ V, $I_{C}=110$ mA.

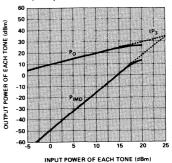


Figure 6. Typical Two Tone 3rd Order Intermodulation Distortion at 2 GHz for a frequency separation of 5 MHz at VCE = 18 V, IC = 110 mA.

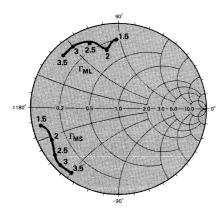


Figure 7. Typical $\Gamma_{MS},~\Gamma_{ML}$ (calculated from the average S-parameters) in the 1.5 to 3.5GHz frequency range, at $V_{CE}=18V,~I_C=110\text{mA}.$

Typical S-Parameters $v_{CE} = 18V, I_C = 110mA$

	S	S ₁₁		S ₂₁			S ₁₂			322
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang
100	0.48	-68	24.8	17.30	140	-31	0.03	62	0.86	-27
200	0.54	-109	22.6	13.50	127	-27	0.04	48	0.69	-46
300	0.59	-132	20.4	10.50	112	-26	0.05	40	0.55	-58
400	0.61	-146	18.5	8.43	102	-25	0.06	36	0.47	-66
500	0.63	-155	16.9	7.02	94	-24	0.06	34	0.41	-7
600	0.64	-162	15.5	5.98	88	-24	0.06	33	0.38	-76
700	0.65	-168	14.3	5.21	83	-24	0.07	33	0.35	-80
800	0.65	-172	13.3	4.62	78	-23	0.07	33	0.34	-84
900	0.65	-176	12.4	4.15	73	-23	0.07	33	0.32	-87
1000	0.64	179	11.5	3.70	69	-22	0.08	32	0.32	-90
1500	0.65	169	8.2	2.57	50	-20	0.10	31	0.32	-104
2000	0.65	151	6.0	1.99	33	-19	0.11	30	0.33	-118
2500	0.66	139	4.3	1.64	17	-17	0.14	25	0.39	-130
3000	0.65	128	2.9	1.40	- 2	-16	0.16	20	0.42	-140
3500	0.64	115	1.8	1.23	-13	-15	0.19	14	0.46	-152
4000	0.63	103	0.9	1.11	-27	-13	0.22	5	0.51	-161
4500	0.61	87	0.2	1.03	-41	-12	0.26	-2	0.53_	-172
5000	0.59	72	-0.7	0.93	-54	-11	0.29	-12	0.57	179
5500	0.58	53	-1.6	0.84	-67	-10	0.34	-22	0.57	167
6000	0.58	38	-2.3	0.77	-79	-9	0.37	-31	0.60	155

LOW NOISE TRANSISTOR

2N6617 (HXTR-6101)

Features

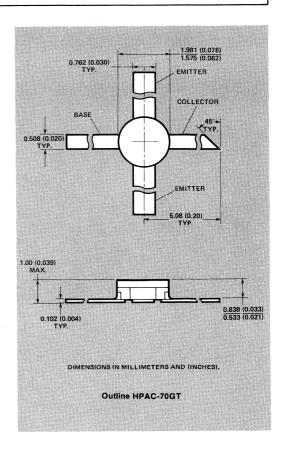
LOW NOISE FIGURE 2.8 dB Typical F_{MIN} at 4 GHz

HIGH ASSOCIATED GAIN 9.0 dB Typical G_a at 4 GHz

HERMETIC PACKAGE

Description

The 2N6617 (HXTR-6101) is an NPN bipolar transistor designed for minimum noise figure. The device utilizies ion implantation techniques in its manufacture and the chip is also provided with scratch protection over its active area. The device is supplied in the HPAC-70GT, a rugged metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(T_{CASE} = 25°C)

Symbol	Parameter	Limit
Vсво	Collector to Base Voltage	35V
VCEO	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.5V
Ic	DC Collector Current	20 mA
PT	Total Device Dissipation	300 mW
Tj	Junction Temperature	300° C
TSTG(MAX)	Storage Temperature	-65°C to
	Lead Temperature	200° C
	(Soldering 10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

- A O_{JC} maximum of 245° C/W should be used for derating and junction temperature calculations (T_J = P_D x O_{JC} + TCASE).
- 2. A MTTF of 1.0×10^7 hours will be met or exceeded when the junction temperature is maintained under $T_J = 200^\circ$ C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters And Test Conditions	Test MIL-STD-750	Units	Min.	Тур.	Max.
BV _{CES}	Collector-Emitter Breakdown Voltage at I _C =100μA	3001.1*	V	30		
lceo	Collector-Emitter Leakage Current at V _{CE} =10V	3041.1	nA			500
Ісво	Collector Cutoff Current at V _{CB} =10V	3036.1	nA			100
h _{FE}	Forward Current Transfer Ratio at V _{CE} =10V, I _C =4mA	3076.1*	-	50	150	250
FMIN	Minimum Noise Figure f = 4 GHz 2 GHz	3246.1	dB		1.6 2.8	3.0
G _a	Associated Gain f = 4 GHz 2 GHz Bias Conditions for Above: VCE = 10V, IC = 4mA		dB dB	8.0	9.0 13.5	

^{*300}µs wide pulse measurement at ≤2% duty cycle.

Figure 1. Typical MAG, FMIN and Associated Gain vs. Frequency at $V_{CE} = 10 \text{ V}$, $I_C = 4 \text{ mA}$.

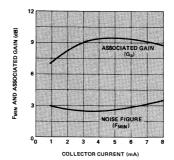


Figure 2. Typical FMIN and Associated Gain vs. Ic at 4 GHz for $V_{CE} = 10 \text{ V}$.

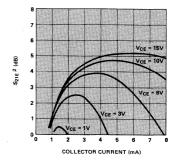


Figure 3. Typical $|S_{21E}|^2$ vs. Bias at 4 GHz.

Typical S-Parameters $v_{CE} = 10V$, $I_C = 4mA$

	S	11	s	21	s	12	S ₂₂	
req. (MHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
100	0.91	-11	7.14	168	0.007	79	0.99	-4
500	0.78	-54	6.27	135	0.026	54	0.90	-18
1000	0.63	-98	5.03	113	0.037	33	0.78	-30
1500	0.59	-127	3.88	87	0.039	28	0.76	-35
2000	0.58	-149	3.14	71	0.042	26	0.75	-43
2500	0.57	-163	2.64	59	0.042	25	0.76	-50
3000	0.57	-173	2.20	48	0.043	25	0.77	-58
3500	0.56	180	1.94	37	0.046	25	0.79	-64
4000	0.54	173	1.66	29	0.049	24	0.81	-71
4500	0.53	167	1.45	- 20	0.053	24	0.85	-76
5000	0.51	160	1.34	11	0.058	23	0.86	-84
5500	0.50	152	1.21	1	0.060	22	0.88	-92
6000	0.48	146	1.07	-7	0.063	20	0.87	-99
7000	0.49	132	0.89	-23	0.069	15	0.87	-108

Typical Noise Parameters

 $V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}$

Freq. (MHz)	Γ _ο (Mag./Ang.)	R _N (Ohms)	F _{MIN} (dB)
1000	.480/23°	23.31	1,45
1500	.450/61°	15.57	1.58
2000	.410/88°	15.73	1.72
3000	.425/121°	10.72	2.18
4000	.475/166°	3.50	2.75
5000	.530/-164°	2.81	3.67
6000	.520/-131°	7.23	4.78

Typical S-Parameters $v_{\text{CE}} = 3V$, $I_{\text{C}} = 0.25 \text{mA}$

	S ₁₁		S ₂₁			S ₁₂			S		
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang	K
500	.988	-22	-6.9	.451	152	-28.2	.039	72	.993	-12	.220
1000	.956	-42	-7.2	.438	127	-23.1	.070	55	.975	-22	.464
1500	.929	-65	-7.5	.423	106	-20.6	.093	38	.956	-33	.586
2000	.910	-81	-7.7	.412	89	-19.7	.104	27	.945	-42	.679
3000	.888	-112	-8.1	394	56	-19.3	108	6	938	-59	.821

 $V_{CE} = 3V, I_{C} = 0.50 mA$

	S ₁₁		S ₂₁			S ₁₂			S	_ к	
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	7
500	.976	-24	-0.8	.991	152	-28.4	.038	70	.986	-13	.220
1000	.929	-47	-1.3	.863	128	-23.6	.066	52	.955	-24	.423
1500	.887	-72	-2.0	.792	107	-21.4	.085	35	.920	-34	.583
2000	.856	-89	-2.5	.747	91	-20.6	.093	24	.906	-43	.682
3000	.818	-121	-3.3	.688	60	-20.1	.099	7	.889	-60	.816

 $V_{CE} = 3V$, $I_C = 1.0 mA$

2 60 g (1)	S ₁₁ S ₂₁						S ₁₂	-	S	J - к -	
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	7 ~
500	.952	-25	4.4	1.67	149	-28.6	.037	66	.972	-14	.328
1000	.884	-54	3.7	1.54	125	-24.3	.061	47	919	-25	492
1500	.821	-82	2.7	1.36	104	-23.1	.070	31	.873	-36	.664
2000	.775	-102	1.9	1.25	88	-22.6	.074	23	.854	-43	.793
3000	.738	-133	.77	1.09	59	-22.1	.079	10	.842	-59	.908

LOW NOISE TRANSISTOR

2N6742 (HXTR-6102)

Features

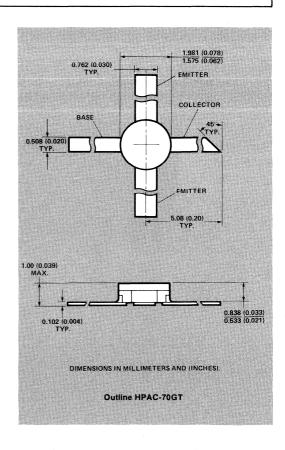
LOW NOISE FIGURE 2.5 dB Typical F_{MIN} AT 4 GHz

HIGH ASSOCIATED GAIN 9.0 dB Typical G_a

HERMETIC PACKAGE

Description

The 2N6742 (HXTR-6102) is an NPN bipolar transistor designed for minimum noise figure. The device utilizes ion implantation techniques in its manufacture and the chip is also provided with scratch protection over its active area. The device is supplied in the HPAC-70GT, a rugged metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings*

(TCASE = 25°C)

Symbol	Parameter	Limit
Vсво —	Collector to Base Voltage	35V
VCEO	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.5V
Ic	DC Collector Current	20 mA
Pt	Total Device Dissipation	300 mW
TJ	Junction Temperature	300° C
TSTG	Storage Temperature	−65°C to
_	Lead Temperature	200°C
	(Soldering 10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

- 1. A Θ_{JC} maximum of 245° C/W should be used for derating and junction temperature calculations ($T_J = P_D \times \Theta_{JC} + T_{CASC}$)
- 2. A MTTF of 1.0 x 107 hours will be met or exceeded when the junction temperature is maintained under $T_J=200^{\circ}C$ (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Symbol	Parameters And Test Conditions	Test MIL-STD-750	Units	Min.	Typ.	Max.
BV _{CES}	Collector-Emitter Breakdown Voltage at I _C =100µA	3001.1*	V	30	1	
Iceo	Collector-Emitter Leakage Current at V _{CE} =10V	3041.1	nA			500
Ісво	Collector Cutoff Current at VcB=10V	3036.1	nA			100
h _{FE}	Forward Current Transfer Ratio at V _{CE} =10V, I _C =4mA	3076.1*		-50	150	250
F _{MIN}	Minimum Noise Figure f = 4 GHz 2 GHz	3246.1	dB		2.8 1.6	3.0
G_a	Associated Gain f = 4 GHz 2 GHz Bias Conditions for Above: V _{CE} = 10V, I _C = 4mA		dB dB	8.0	9.0 13.5	

^{*300}µs wide pulse measurement at ≤2% duty cycle.

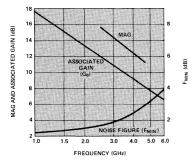


Figure 1. Typical MAG, F_{MIN} and Associated Gain vs. Frequency at $V_{CE} = 10 \text{ V}$, $I_{C} = 4 \text{ mA}$.

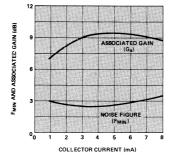


Figure 2. Typical F_{MIN} and Associated Gain vs. I_C at 4 GHz for V_{CE} = 10 V (Tuned for F_{MIN}).

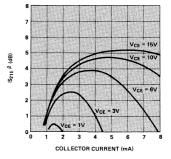


Figure 3. Typical $|S_{21E}|^2$ vs. Bias at 4 GHz.

Typical S-Parameters $v_{CE} = 10V$, $I_C = 4mA$

	S	Sii		21	S	12	S ₂₂	
Freq. (MHz)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
100	0.917	-11	7.149	168	0.007	79	0.991	-4
500	0.782	-54	6.277	135	0.026	54	0.901	-18
1000	0.635	-98	5.037	113	0.037	33	0.787	-30
1500	0.598	-127	3.881	87	0.039	28	0.763	-35
2000	0.589	-149	3.148	71	0.042	26	0.754	-43
2500	0.570	-163	2.646	59	0.042	25	0.760	-50
3000	0.575	-173	2.209	48	0.043	25	0.773	-58
3500	0.560	180	1.948	37	0.046	25	0.795	-64
4000	0.548	173	1.665	29	0.049	24	0.816	-71
4500	0.530	167	1.450	20	0.053	24	0.850	-76
5000	0.518	160	1.346	11	0.058	23	0.860	-84
5500	0.500	152	1.210	1	0.060	22	0.880	-92
6000	0.489	146	1.076	-7	0.063	20	0.877	-99
7000	0.491	132	0.897	-23	0.069	15	0.872	-108

Typical Noise Parameters

 $V_{CE} = 10 \text{ V}, I_{C} = 4 \text{ mA}$

Freq. (MHz)	Γ _ο (Mag./Ang.)	R _N (Ohms)	F _{MIN} (dB)
1000	.480/23°	23.31	1.45
1500	.450/61°	15.57	1.58
2000	.410/88°	15.73	1.72
3000	.425/121°	10.72	2.18
4000	.475/166°	3.50	2.75
5000	.530/-164°	2.81	3.67
6000	.520/-131°	7.23	4.78

Low Power Bias Performance

Bias	6					
V _{CE}	I _C mA	F _{MIN}	G _a	R _N	$\Gamma_{f o}$	Γ _L
V		dB	dB	Ohms	Mag./Ang.	Mag./Ang.
3	0.25	2.25	8.5	60.5	.805/31°	.788/25°
3	0.50	1.87	12.7	25.5	.713/38°	.779/29°
3	1.00	1.55	15.7	13.9	.571/39°	.774/29°

Figure 4. Noise Parameters at 1 GHz.

		Frequency											
BIAS		1000 MHz		1500 MHz		2000 MHz		3000MHz					
V _{CE}	I _C	F _{MIN}	G _a										
V	mA	dB	dB	dB	dB	dB	dB	dB					
3	0.25	2.25	8.5	2.67	5.0	2.83	4.7	3.88	4.1				
3	0.50	1.87	12.7	2.06	9.9	2.23	7.9	2.93	6.4				
3	1.0	1.55	15.7	1.73	11.7	1.79	10.2	2.38	8.1				

Figure 5. Noise Performance vs. Frequency and Bias.

Typical S-Parameters $v_{\text{CE}} = 3V$, $I_{\text{C}} = 0.25 \text{mA}$

	S	11		S ₂₁			S ₁₂		S	-	
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang	- ^
500	.988	-22	-6.9	.451	152	-28.2	.039	72	.993	-12	.220
1000	.956	-42	-7.2	.438	127	-23.1	.070	55	.975	-22	.464
1500	.929	-65	-7.5	.423	106	-20.6	.093	38	.956	-33	.586
2000	.910	-81	-7.7	.412	89	-19.7	.104	27	.945	-42	.679
3000	.888	-112	-8.1	.394	56	-19.3	.108	6	.938	-59	.821

 $V_{CE} = 3V$, $I_C = 0.50mA$

	S ₁₁ S ₂₁ S ₁₂ S ₂₂										
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	- к
500	.976	-24	-0.8	.991	152	-28.4	.038	70	.986	-13	.220
1000	.929	-47	-1.3	.863	128	-23.6	.066	52	.955	-24	.423
1500	.887	-72	-2.0	.792	107	-21.4	.085	35	.920	-34	.583
2000	.856	-89	-2.5	.747	91	-20.6	.093	24	.906	-43	.682
3000	.818	-121	-3.3	.688	60	-20.1	.099	7	.889	-60	.816

 $V_{CE} = 3V$, $I_C = 1.0mA$

Freq. (MHz)	S ₁₁		S ₂₁			S ₁₂			S	22	
	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	K
500	.952	-25	4.4	1.67	149	-28.6	.037	66	.972	-14	.328
1000	.884	-54	3.7	1,54	125	-24.3	.061	47	.919	-25	.492
1500	.821	-82	2.7	1.36	104	-23.1	.070	31	.873	-36	.664
2000	.775	-102	1.9	1.25	88	-22.6	.074	23	.854	-43	.793
3000	.738	-133	.77	1.09	59	-22.1	.079	10	.842	-59	.908

LOW NOISE TRANSISTOR

2N6618 (HXTR- 6103)

Features

GUARANTEED LOW NOISE FIGURE 2.2 dB Maximum F_{MIN} at 2 GHz

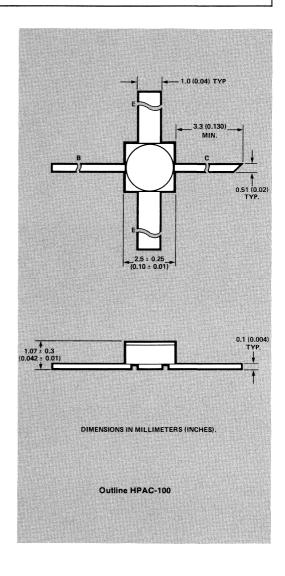
HIGH ASSOCIATED GAIN 12.0 dB Typical G_a at 2 GHz

HERMETIC PACKAGE

Description

The 2N6618 (HXTR-6103) is an NPN bipolar transistor designed for minimum noise figure at 2 GHz. The device utilizes ion implantation and self alignment techniques in its manufacture. The chip is provided with scratch protection over its active area.

These devices are supplied in the HPAC-100, a rugged metal/ceramic hermetic package, and are capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.


Absolute Maximum Ratings *

(T_{CASE} = 25°C)

Symbol	Parameter	Limit
Vcво	Collector to Base Voltage	35V
VCEO	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.5V
Ic	DC Collector Current	20 mA
PT	Total Device Dissipation	300 mW
TJ	Junction Temperature	300° C
TSTG	Storage Temperature	-65° C to
	Lead Temperature	200°C
	(Soldering10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

- A OJC maximum of 245° C/W should be used for derating and junction temperature calculations (T_J = P_D x OJC + TCASE).
- A MTTF of 1.0 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at $T_{CASE} = 25$ °C

Symbol	Parameters And Test Conditions	Test MIL-STD-750	Units	Min.	Тур.	Max.
BV _{CES}	Collector Emitter Breakdown Voltage at I _C = 100 _µ A	3011.1*	٧	30		
ICEO	Collector Emitter Leakage Current at V _{CE} = 10V	3041.1	nA			500
Ісво	Collector Cut Off Current at V _{CB} = 10V	3036.1	nA			100
hFE	Forward Current Transfer Ratio at V _{CE} =10V, I _C =3mA	3076.1*		50	150	250
F _{MIN}	Minimum Noise Figure at 2 GHz	3246.1	dB		1.8	2.2
Ga	Associated Gain at 2 GHz		dB	11.0	12.0	
	Bias for above: $V_{CE} = 10V$, $I_C = 3 \text{ mA}$		11.00			40

^{*300} μ s wide pulse measurement at \leq 2% duty cycle.

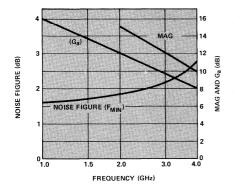


Figure 1. Typical MAG, F_{MIN} and Associated Gain vs. Frequency at $V_{CE} = 10 \text{ V}$, $I_C = 3 \text{ mA}$.

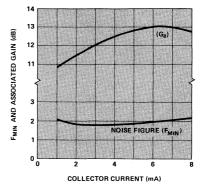


Figure 2. Typical F_{MIN} and Associated Gain vs. Collector Current at 2 GHz for $V_{CE}=10~V$ (Tuned for F_{MIN}).

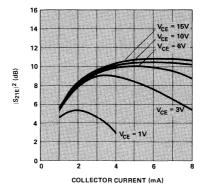


Figure 3. Typical $|S_{21E}|^2$ vs. Bias at 2 GHz.

Typical Noise Parameters $v_{CE} = 10 \text{ V}, I_C = 3 \text{ mA}$

Freq. (MHz)	Γ _ο	R _N	F _{MIN}
	(Mag./Ang.)	(Ohms)	(dB)
1000	.465/36°	25.1	1.55
1500	.369/67°	22.5	1.65
2000	.323/94°	23.3	1.80

Typical S- Parameters V_{CE} = 10V, I_{C} = 3 mA

0.000	s	944	100	S21			S ₁₂		S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.93	-11.5	16.2	6.46	168.0	-42.0	0.01	77.0	0.99	-4.0
200	0.89	-23.0	17.1	7.13	158.0	-37.0	0.01	77.0	0.97	-8.0
300	0.86	-34.0	16.4	6.58	149.0	-34.0	0.02	66.0	0.94	-12.0
400	0.83	-44.0	15.9	6.26	142.0	-32.0	0.03	60.0	0.92	-16.0
500	0.79	-54.0	15.6	6.02	135.0	-30.0	0.03	55.0	0.89	-19.0
600	0.75	-65.0	15.4	5.91	128.0	-29.0	0.04	51.0	0.87	-21.0
700	0.71	-73.0	15.0	5.62	121.0	-29.0	0.04	48.0	0.85	-24.0
800	0.68	-81.0	14.4	5.25	116.0	-28.0	0.04	45.0	0.84	-25.0
900	0.65	-91.0	14.0	4.99	111.0	-28.0	0.04	43.0	0.83	-27.0
1000	0.62	-97.0	13.5	4.72	106.0	-27.0	0.04	41.0	0.81	-28.0
1500	0.52	-129.0	11.4	3.71	84.0	-27.0	0.05	32.0	0.74	-35.0
2000	0.50	-151.0	9.3	2.93	69.0	-26.0	0.05	31.0	0.72	-43.0
2500	0.50	-169.0	7.8	2.45	55.0	-26.0	0.05	31.0	0.69	-51.0
3000	0.49	175.0	6.5	2.12	42.0	-26.0	0.06	33.0	0.68	-57.0
3500	0.54	165.0	5.4	1.87	29.0	-25.0	0.06	35.0	0.65	-68.0
4000	0.52	156.0	4.5	1.67	19.0	-24.0	0.06	37.0	0.68	-76.0
5000	0.53	140.0	2.6	1.35	-3.0	-23.0	0.08	35.0	0.71	-96.0
6000	0.48	120.0	0.9	1.11	-22.0	-21.0	0.09	34.0	0.73	-112.0

LOW NOISE TRANSISTOR

2N6743 (HXTR-6104)

Features

GUARANTEED LOW NOISE FIGURE
1.6 dB Maximum F_{MIN} at 1.5 GHz

HIGH ASSOCIATED GAIN
14.0 dB Typical G_a at 1.5 GHz

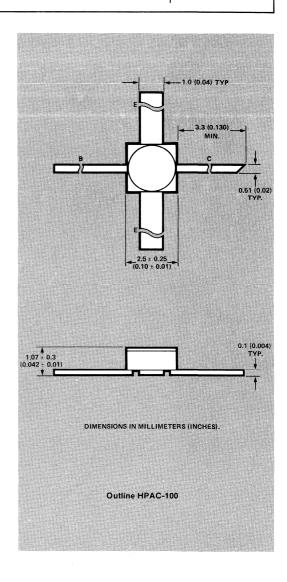
HERMETIC PACKAGE

Description

The 2N6743 (HXTR-6104) is an NPN bipolar transistor designed for minimum noise figure at 1.5 GHz. The device utilizes ion implantation techniques and self alignment techniques in its manufacture. The chip is provided with scratch protection over its active area.

The 2N6743 (HXTR-6104) is supplied in the HPAC-100, a rugged metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings*


(T_{CASE} = 25°C)

Symbol	Parameter	Limit
VcBO ^[1]	Collector to Base Voltage	35V
VcEo[1]	Collector to Emitter Voltage	20V
VEBO [1]	Emitter to Base Voltage	1.5V
Ic [1]	DC Collector Current	20 mA
P _T [1]	Total Device Dissipation	300 mW
TJ	Junction Temperature	300° C
TSTG	Storage Temperature	-65°C to
	Lead Temperature	200° C
	(Soldering 10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- 1. A Θ_{JC} maximum of 245°C/W should be used for derating and junction temperature calculations (T_J = P_D x Θ_{JC} + TCASE).
- A MTTF of 1.0 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at T_{CASE} = 25°C

Symbol	Parameters And Test Conditions	Test MIL-STD-750	Units	Min.	Typ.	Max.
BV _{CES}	Collector Emitter Breakdown Voltage at I _C = 100µA	3011.1*	٧	30		
ICEO	Collector Emitter Leakage Current at V _{CE} = 10V	3041.1	пА			500
Ісво	Collector Cut Off Current at V _{CB} = 10V	3036.1	nA			100
h _{FE}	Forward Current Transfer Ratio at V _{CE} =10V,I _C =3mA	3076.1*		50	150	250
F _{MIN}	Minimum Noise Figure f = 1.5 GHz	3246.1	dB		1.4	1.6
G _a	Associated Gain f = 1.5 GHz Bias for above: V _{CE} = 10V, I _C = 3 mA		dB	13.0	14.0	

^{*300} µs wide pulse measurement at ≤ 2% duty cycle.

Figure 1. Typical MAG, F_{MIN} and Associated Gain vs. Frequency at $V_{CE}=10~V,$ $I_{C}=3~mA.$

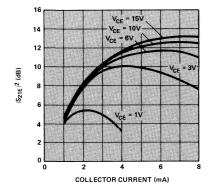


Figure 3. Typical $|S_{21E}|^2$ vs. Bias at 1.5 GHz.

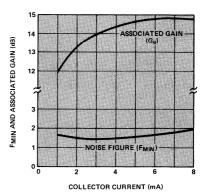


Figure 2. Typical Noise Figure and Associated Gain vs. Ic at 1.5 GHz for $V_{CE} = 10V$ (Tuned for F_{MIN}).

Typical Noise Parameters

 $V_{CE} = 10 \text{ V}, I_{C} = 3 \text{ mA}$

Freq. (MHz)	Γ _ο (Mag./Ang.)	R _N (Ohms)	FMIN (dB)
1000	.465/36°	25.09	1.20
1500	.369/67°	22.47	1.40
2000	.323/94°	23.31	1.50

Typical S-Parameters v_{CE} = 10V, I_{C} = 3 mA

	S	i11		S21			S ₁₂		s	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.93	-11.5	16.2	6.46	168.0	-42.0	0.01	77.0	0.99	-4.0
200	0.89	-23.0	17.1	7.13	158.0	-37.0	0.01	77.0	0.97	-8.0
300	0.86	-34.0	16.4	6.58	149.0	-34.0	0.02	66.0	0.94	-12.0
400	0.83	-44.0	15.9	6.26	142.0	-32.0	0.03	60.0	0.92	-16.0
500	0.79	-54.0	15.6	6.02	135.0	-30.0	0.03	55.0	0.89	-19.0
600	0.75	-65.0	15.4	5.91	128.0	-29.0	0.04	51.0	0.87	-21.0
700	0.71	-73.0	15.0	5.62	121.0	-29.0	0.04	48.0	0.85	-24.0
800	0.68	-81.0	14.4	5.25	116.0	-28.0	0.04	45.0	0.84	-25.0
900	0.65	-91.0	14.0	4.99	111.0	-28.0	0.04	43.0	0.83	-27.0
1000	0.62	-97.0	13.5	4.72	106.0	-27.0	0.04	41.0	0.81	-28.0
1500	0.52	-129.0	11.4	3.71	84.0	-27.0	0.05	32.0	0.74	-35.0
2000	0.50	-151.0	9.3	2.93	69.0	-26.0	0.05	31.0	0.72	-43.0
2500	0.50	-169.0	7.8	2.45	55.0	-26.0	0.05	31.0	0.69	-51.0
3000	0.49	175.0	6.5	2.12	42.0	-26.0	0.06	33.0	0.68	-57.0
3500	0.54	165.0	5.4	1.87	29.0	-25.0	0.06	35.0	0.65	-68.0
4000	0.52	156.0	4.5	1.67	19.0	-24.0	0.06	37.0	0.68	-76.0
5000	0.53	140.0	2.6	1.35	-3.0	-23.0	0.08	35.0	0.71	-96.0
6000	0.48	120.0	0.9	1.11	-22.0	-21.0	0.09	34.0	0.73	-112.0

GENERAL PURPOSE TRANSISTOR

HXTR-6105

Features

LOW NOISE FIGURE
4.2 dB Maximum F_{MIN} at 4 GHz
HIGH ASSOCIATED GAIN
9 dB Typical G_a at 4 GHz
WIDE DYNAMIC RANGE
HERMETIC PACKAGE

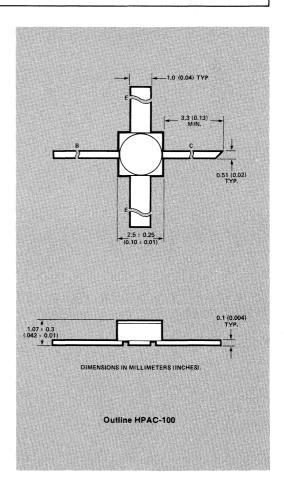
Description

The HXTR-6105 is an NPN bipolar transistor designed for high gain up to 4 GHz with high output dynamic range. This transistor also features high output power and high gain at the NF bias and tuning conditions.

The device utilizes ion implantation techniques and self alignment techniques in its manufacture. The chip is provided with a dielectric scratch protection over its active area.

The HXTR-6105 is supplied in the HPAC-100, a rugged metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings*


(T_{CASE} = 25° C)

Symbol	Parameter	Limit
Vсво	Collector to Base Voltage	30V
VCEO	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.57
Ic	DC Collector Current	70 mA
PT	Total Device Dissipation	900 mW
TJ	Junction Temperature	300°C
TstG	Storage Temperature	-65° C to
	100	200° C
-	Lead Temperature (Soldering	
	10 seconds each lead)	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- A Θ_{JC} maximum of 210° C/W should be used for derating and junction temperature calculations (T_J = P_D x Θ_{JC} + T_{CASE}).
- A MTTF of 1.0 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at T_{CASE} = 25°C

Symbol	Parameters and Test Conditions	MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
BVCES	Collector-Emitter Breakdown Voltage I _C =100µA	3011.1 *	٧	30		
Iceo -	Collector-Emitter Leakage Current at V _{CE} =15V	3041.1	nA			500
Ісво	Collector Cut Off Current at V _{CB} = 15V	3036.1	nA			100
hFE	Forward Current Transfer Ratio at V _{CE} =15V, I _C =15mA	3076.1*	-	50	120	220
F _{MIN}	Minimum Noise Figure f = 1.5 GHz = 4 GHz	3246.1	dB		2.2 3.8	4.2
Ga	Associated Gain f = 1.5 GHz V _{CE} = 15V, I _C = 15mA = 4 GHz		dB	8.0	15.0 9.0	144
P _{1dB}	Power Output at 1dB Compression at 4 GHz V _{CE} = 15V, I _C = 15mA		dBm	4.00	14	-

^{*300} µs wide pulse measurement at ≤ 2% duty cycle.

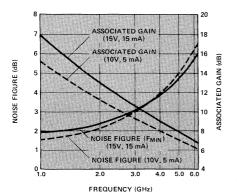


Figure 1. Typical FMIN and Associated Gain vs. Frequency.

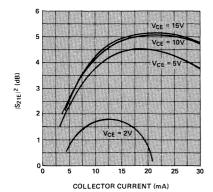


Figure 3. Typical $|S_{21E}|^2$ vs. Current at 4 GHz.

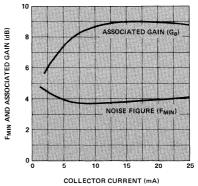


Figure 2. Typical F_{MIN} and Associated Gain vs. I_C at 4 GHz for V_{CE}=15V (Tuned for F_{MIN}).

Typical Noise Parameters

 $V_{CE} = 15 \text{ V}, I_{C} = 15 \text{ mA}$

Freq. (MHz)	Γ _ο (Mag./Ang.)	R _N (Ohms)	F _{MIN} (dB)
1000	.238/123°	6.81	1.80
1500	.385/142°	5.33	2.15
2000	.429/173°	5.04	2.25
3000	.541/-158°	6.54	3.01
4000	.628/-135°	15.54	3.81
5000	.624/-107°	60.14	4.75

Typical S-Parameters v_{CE} = 15V, I_C = 15mA

	S	11		S ₂₁			S ₁₂			S ₂₂	
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang	
100	0.66	-52	29.0	28.3	152	-39.2	0.01	69	0.90	-16	
500	0.59	-139	22.0	12.5	101	-37.7	0.03	41	0.55	-33	
1000	0.59	-169	16.5	6.71	80	-29.6	0.03	45	0.47	-37	
1500	0.59	177	13.1	4.54	65	-27.5	0.04	49	0.47	-41	
2000	0.61	165	10.8	3.48	53	-25.5	0.05	50	0.47	-50	
2500	0.60	159	8.8	2.75	43	-24.0	0.06	51	0.49	-61	
3000	0.62	148	7.2	2.28	32	-22.7	0.07	52	0.50	-68	
3500	0.62	141	5.7	1.93	21	-21.4	0.09	49	0.54	-80	
4000	0.62	132	4.6	1.70	10	-20.0	0.10	47	0.57	-85	
4500	0.60	126	3.5	1.50	0.0	-19.0	0.11	45	0.60	-94	
5000	0.60	118	2,6	1.35	-9	-17.2	0.14	42	0.65	-102	
5500	0.61	112	1.8	1.23	-20	-16.8	0.14	35	0.66	-112	
6000	0.62	104	0.9	1.11	-29	-16.1	0.16	31	0.67	-122	

GENERAL PURPOSE TRANSISTOR

HXTR - 6106

Features

GUARANTEED LOW NOISE FIGURE 2.7 dB Maximum F_{MIN} at 2 GHz HIGH ASSOCIATED GAIN 11.5 dB Typical G_a at 2 GHz WIDE DYNAMIC RANGE HERMETIC PACKAGE

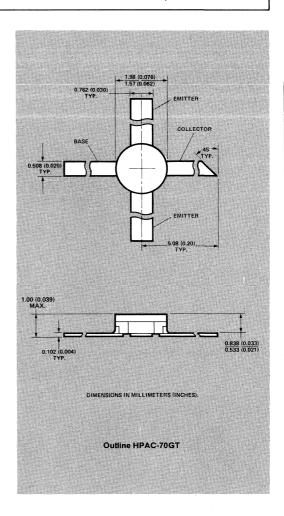
Description

The HXTR-6106 is an NPN bipolar transistor designed for low noise up to 6 GHz with wide dynamic range. This transistor also features high output power and high gain at the NF bias and tuning conditions.

The device utilizes ion implantation and self alignment techniques in its manufacture and the chip is provided with a dielectric scratch protection over its active area.

The HXTR-6106 is supplied in the HPAC-70GT, a rugged metal/ceramic hermetic package, and is capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings*


(T_{CASE} = 25° C)

Symbol	Parameter	Limit
Vcвo	Collector to Base Voltage	30V
VCEO	Collector to Emitter Voltage	20V
VEBO	Emitter to Base Voltage	1.5V
Ic	DC Collector Current	70 mA
Pt	Total Device Dissipation	900 mW
TJ	Junction Temperature	300°C
TSTG	Storage Temperature	-65° C to
		200° C
	Lead Temperature Soldering	
	10 seconds each lead	+250° C

^{*}Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- A OJC maximum of 185° C/W should be used for derating and junction temperature calculations (T_J = P_D x OJC + TCASE).
- A MTTF of 1.0 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200° C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at T_{CASE} = 25°C

Symbol	Parameters and Test Conditions		MIL-STD-750 Test Method	Units	Min.	Typ.	Max.
BVCES	Collector-Emitter Breakdown Voltage at I _C = 100µA	3011.1*	V	30		-	
Iceo	Collector-Emitter Leakage Current at V _{CE} = 15V	3041.1	nA	1		500	
Ісво	Collector Cutoff Current at V _{CB} = 15V	3036.1	nΑ			100	
hre	Forward Current Transfer Ratio at VcE = 15V, Ic = 15	3076.1*	_	50	120	220	
F _{MIN}	Minimum Noise Figure	f=2 GHz 4 GHz	3246.1	dB		2.5 3.8	2.7
Ga	Associated Gain VcE = 15V, Ic = 10 mA	f=2 GHz 4 GHz	3246.1	ab	10.0	11.5 9.0	
PidB	Associated Output Power at 1dB Gain Compression VCE = 15V, IC = 10mA	f=2 GHz		dBm		15	

^{*300} μ s wide pulse measurement \leq 2% duty cycle.

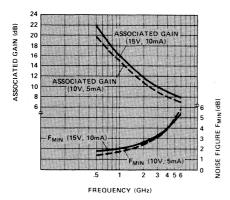


Figure 1. Typical Noise Figure (F_{MIN}) and Associated Gain vs. Frequency.

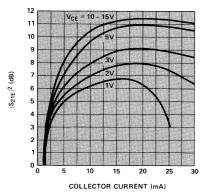


Figure 3. Typical |S_{21E}|² vs. Current at 2 GHz.

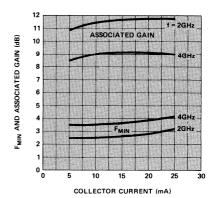


Figure 2. Typical Noise Figure (F_{MIN}) and Associated Gain vs. Current at 2 GHz and 4 GHz at $V_{CE}=15V$.

Typical Noise Parameters

Freq. (GHz)	F _{min} (dB)	G _a (dB)	Γ_{o}	$R_N(\Omega)$
1.0	1.8	14.3	.10/60	48.9
1,5	2.1	13.3	.27/132	19.1
2.0	2.4	11.6	.46/156	9.9
3.0	3.4	8.9	.53/167	8.4
4.0	4.3	6.9	.61/174	6.4

Figure 4. Typical Noise Parameters at $V_{CE} = 10V$, $I_{C} = 5mA$.

Typical S-Parameters $v_{CE} = 15V$, $I_C = 10mA$

	S	11		S ₂₁			S ₁₂		S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.
100	0.77	-36	26.4	20.8	157	-38.4	0.012	67	0.93	-12
200	0.72	-70	25.6	19.0	139	-34.0	0.020	55	0.82	-21
300	0.70	-95	24.1	16.0	125	-32.0	0.025	46	0.71	-26
400	0.70	-113	22.7	13.6	115	-31.0	0.028	41	0.64	-29
500	0,69	-126	21.3	11.6	108	-30.5	0.030	37	0.59	-31
600	0.68	-136	20.1	10.1	102	-29.9	0.032	36	0.56	-33
700	0.67	-143	19.0	8.9	97	-29.6	0.033	35	0.54	-34
800	0.66	-149	18.0	7.9	93	-29.4	0.034	35	0.54	-35
900	0.66	-154	17.0	7.0	91	-29.1	0.035	34	0.53	-36
1000	0.66	-159	16.1	6.4	86	-28.9	0.036	35	0.53	-36
1500	0.68	-174	12.8	4.3	72	-27.0	0.040	36	0.48	-41
2000	0.66	177	10.5	3.3	61	-27.1	0.044	40	0.50	-51
2500	0.68	169	8.5	2.6	50	-26.2	0.049	42	0.50	-60
3000	0.67	163	7.0	2.2	39	-25.0	0.056	44	0.54	-67
3500	0.69	156	5.6	1.9	31	-24.1	0.062	46	0.54	-77
4000	0.68	152	4.5	1.7	21	-23.1	0.070	46	0.60	-85
4500	0.69	142	3.6	1.5	12	-22.2	0.078	47	0.60	-92
5000	0.71	138	2.5	1.3	4	-21.2	0.087	46	0.62	-102
5500	0.70	130	1.8	1.2	-5	-20.5	0.094	42	0.66	-111
6000	0.76	124	0.9	1.1	-13	-19.7	0.103	42	0.67	-120
6500	0.71	121	0.0	1.0	-23	-19.1	0.111	38	0.75	-129

LOW NOISE, HIGH PERFORMANCE TRANSISTOR

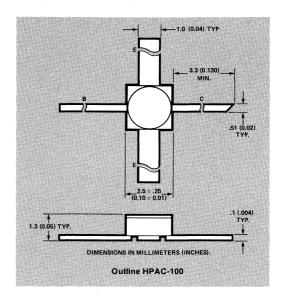
Features

GUARANTEED NOISE FIGURE
3.4 dB Maximum F_{MIN} at 4 GHz

GUARANTEED ASSOCIATED GAIN 8.1 dB Minimum G_a AT 4 GHz

HIGH OUTPUT POWER
18.5 dBm Typical P_{1dB} at 4 GHz

HIGH P_{1dB} GAIN 9.1 dB Typical G_{1dB} at 4 GHz


HIGH GAIN BANDWIDTH PRODUCT 6.0 GHz Typical ft

HERMETIC PACKAGE

Description

The HXTR-7111 is an NPN silicon bipolar transistor designed for use in low noise wide band amplifier or medium power oscillation applications requiring superior VHF, UHF, or microwave performance. Excellent device uniformities, performance, and reliability are produced by the ion implantation and self alignment techniques used in the fabrication of these devices. The chip is provided with scratch protection over its active area.

The HXTR-7111 is supplied in the HPAC-100, a rugged hermetic metal-ceramic package capable of meeting the environmental requirements of MIL-S-19500 and the test requirements of MIL-STD-750/883.

Absolute Maximum Ratings*

(T_{CASE} = 25° C)

Symbol	Parameter	Value
Vcво	Collector to Base Voltage	30 V
VCEO	Collector to Emitter Voltage	18 V
VEBO	Emitter to Base Voltage	1.5 V
Ic	DC Collector Current	65 mA
PT	Total Device Dissipation	600 mW
Tu	Junction Temperature	300° C
TstG	Storage Temperature	-65° C
		to
	and a company of the	200° C
	Lead Temperature	
	(Soldering 10 seconds each lead)	+250° C

*Operation in excess of any one of these conditions may result in permanent damage to this device.

Notes:

- A O_{JC} maximum of 170° C/W should be used for derating and junction temperature calculations (T_J = P_D x O_{JC} + TCase).
- A MTTF of 1 x 10⁷ hours will be met or exceeded when the junction temperature is maintained under T_J = 200°C (based on an activation energy of 1.1 eV). For operation above this condition, refer to page 108. "Reliability Performance of Bipolar Transistors".

Electrical Specifications at $T_{CASE} = 25^{\circ}C$

Symbol	Parameters and Test Conditions	MIL-STD-750 Test Method	Units	Min.	Тур.	Max.
ВУсво	Collector-Base Breakdown Voltage at Ic = 100 μA	3001.1*	٧	30		
BVCEO	Collector-Emitter Breakdown Voltage at I _C = 15 mA	3011.1*	٧	18		
Ісво	Collector-Base Cutoff Current at V _{CB} = 15 V	3036.1**	nA			50
ICEO	Collector-Emitter Leakage Current at VcE = 15 V	3041.1	nA			50
hFE	Forward Current Transfer Ratio at V _{CE} = 10 V, I _C = 10 mA	3076.1		55		175
fr	Gain Bandwidth Product at V _{CE} = 10 V, I _C = 10 mA		GHz		6.0	
FMIN	Minimum Noise Figure V _{CE} = 10 V, I _C = 10 mA	3246.1	dB	183 183 184 184 184	1.2 1.7 2.8	3.4
Ga	Associated Gain V _{CE} = 10 V, I _C = 10 mA f = 1000 MHz f = 2000 MHz f = 4000 MHz	3246.1	dB	8.1	18.5 13.8 8.7	
PidB	Power Output at 1 dB Gain Compression at 4000 MHz Compression, VcE = 15 V, Ic = 18 mA,		dBm		18.5	
G _{1dB}	Associated 1 dB Compressed Gain at 4000 MHz VcE = 15 V, ic = 18 mA		dB		9.1	-
C _{12E}	Reverse Transfer Capacitance f = 1 MHz V _{CB} = 10 V, I _C = 0 mA		pF		0.27	

^{*300} μ s wide pulse measurement \leq 2% duty cycle.

^{**}Measured under low ambient light conditions.

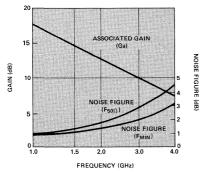


Figure 1. Typical Noise Figure and Associated Gain vs. Frequency at $V_{CE} = 10 \text{ V}$, $I_{C} = 10 \text{ mA}$.

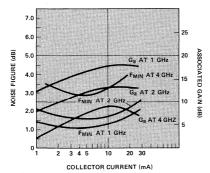


Figure 3. Typical $^{\hat{}}$ FMIN and Associated Gain $^{\hat{}}$ Ga $^{\hat{}}$ vs. Collector Current at VCE = 10 V.

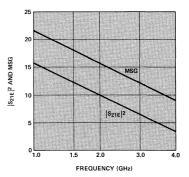


Figure 2. Typical $|S_{21E}|^2$ and Maximum Stable Gain (MSG) vs. Frequency at $V_{CE}=10~V$ and $I_C=10~mA$.

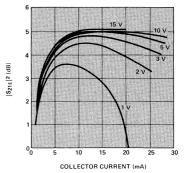


Figure 4. Typical $|S_{21E}|^2$ vs. Current at 4000 MHz.

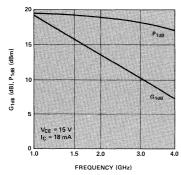


Figure 5. Typical Power Output at 1 dB Compression Gain vs. Frequency.

Typical Noise Parameters

 $V_{CE} = 10 \text{ V}, I_{C} = 10 \text{ mA}$

Frequency (MHz)	F _{MIN} (dB)	G _{MIN} (dB)	Mag.	o Ang.	R _n (ohms)
1000	1.2	18.5	0.22	141	2.6
2000	1.7	13.8	0.43	174	3.3
4000	2.8	8.7	0.57	-138	11.6

Typical S-Parameters $(V_{CE} = 10 \text{ V}, I_C = 10 \text{ mA})$

1986	S ₁₁			S ₂₁		s	12	S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
100	0.68	-46	27.8	24.6	154	0.02	63	0.93	-15
200	0.64	-78	26.1	20.2	135	0.02	56	0.80	-26
300	0.65	-105	24.4	16.5	121	0.03	47	0.70	-32
400	0.63	-120	22.7	13.6	113	0.03	43	0.63	-34
500	0.62	-131	21.1	11.4	106	0.03	39	0.58	-35
600	0.61	-140	19.7	9.7	100	0.03	43	0.54	-36
700	0.61	-148	18.6	8.5	95	0.04	43	0.52	-36
800	0.60	-154	17.5	7.5	90	0.04	43	0.50	-37
900	0.61	-160	16.6	6.8	86	0.04	43	0.48	-40
1000	0.61	-164	15.7	6.1	83	0.04	43	0.47	-41
1500	0.61	-178	12.4	4.2	68	0.05	49	0.46	-50
2000	0.61	171	10.1	3.2	57	0.06	56	0.47	-57
2500	0.62	164	8.2	2.6	45	0.07	60	0.49	-68
3000	0.63	156	6.8	2.2	34	0.09	61	0.52	-75
3500	0.63	149	5.5	1.9	24	0.11	61	0.54	-85
4000	0.62	141	4.5	1.7	14	0.13	59	0.57	-93
4500	0.61	132	3.5	1.5	5	0.15	57	0.57	-102
5000	0.60	123	2.7	1.4	-4	0.18	53	0.62	-110
5500	0.61	112	2.0	1,3	-14	0.21	48	0.63	-118
6000	0.62	103	1.2	1.2	-22	0.23	43	0.67	-131
6500	0.62	93	0.5	1.1	-31	0.26	36	0.71	-140

Typical S-Parameters (V_{CE} = 15 V, I_C = 18 mA)

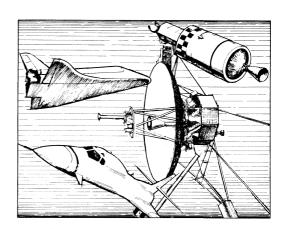
	S ₁₁		40.00	S ₂₁		S	12	S	22
Freq. (MHz)	Mag.	Ang.	(dB)	Mag.	Ang.	Mag.	Ang.	Mag.	Ang.
100	0.63	-59	29.7	30.6	149	0.01	64	0.90	-18
200	0.61	-95	27.4	23.5	129	0.02	46	0.75	-26
300	0.62	-119	25.3	18.3	115	0.02	48	0.65	-30
400	0.62	-133	23.4	14.7	107	0.02	43	0.60	-31
500	0.61	-143	21.7	12.1	101	0.03	48	0.56	-31
600	0.60	-151	20.2	10.2	95	0.03	44	0.53	-32
700	0.60	-157	19.0	8.9	91	0.03	49	0.52	-32
800	0.60	-162	17.8	7.8	87	0.03	49	0.50	-32
900	0.60	-167	16.9	7.0	83	0.03	51	0.49	-35
1000	0.60	-170	16.0	6.3	81	0.03	51	0.48	-35
1500	0.61	177	12.7	4.3	67	0.04	60	0.48	-46
2000	0.61	168	10.4	3.3	55	0.06	65	0.50	-53
2500	0.62	161	8.3	2.6	44	0.07	67	0.52	-64
3000	0.63	153	6.9	2.2	33	0.09	68	0.54	-72
3500	0.63	147	5.6	1.9	23	0.11	66	0.56	-83
4000	0.62	139	4.6	1.7	23 13	0.13	64	0.60	-89
4500	0.62	130	3.5	1.5	4	0.15	60	0.60	-100
5000	0.60	121	2.9	1.4	-5	0.18	56	0.65	-106
5500	0.62	110	2.3	1.3	-16	0.21	52	0.65	-116
6000	0.63	102	1.6	1.2	-24	0.23	46	0.70	-128
6500	0.63	91	0.8	1,1	-33	0.26	40	0.74	-137

Reliability Data for Silicon Bipolar Transistors

RELIABILITY PERFORMANCE BIPOLAR TRANSISTORS

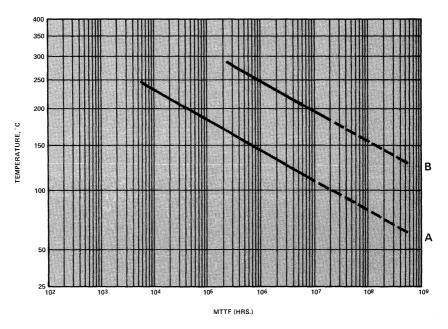
HXTR-2000 HXTR-3000 HXTR-5000 HXTR-6000 HXTR-7000 PRODUCT SERIES

Description


For applications requiring component reliability estimation, Hewlett-Packard provides reliability information for all families of devices.

These bipolar transistor products utilize a common manufacturing process, to include similar metallization systems, ion implantation, and self-alignment techniques, maintaining in this fashion a high degree of uniform quality and reliability.

The reliability performance of this bipolar transistor family is governed primarily by a thermally activated process. Hence, the junction temperature T_j of the device dictates the performance achieved under various applications.


Applications

This information represents the capabilities of the generic device. Performance criteria and Mean Time To Failure (MTTF) values presented here are achieved with MIL-S-19500 level sampling.

Life and Environmental Test Performance

Life/Environment Stress	Test Method	Stress Condition	Minimum Stress Duration	Typical Performance Criteria, LTPD or λ
Operating Life	MIL-STD-750 Method 1026.3	T _J /T _{CH} - 200° C	1000 Hours	5
High Temperature Storage	MIL-STD-883 Method 1008	Test Condition D, T _A = 200° C	1000 Hours	7
HTRB	MIL-STD-750 Method 1038/ 1039	Test Condition A, T _A = 200° C	1000 Hours	7
Temperature Cycling	MIL-STD-883 Method 1010	Test Condition D, -65° C to 200° C	100 cycles	15
Thermal Shock	MIL-STD-883 Method 1011	Test Condition D, -65° C to 200° C	100 cycles	15
Solderability	MIL-STD-202 Method 208	Т _{РbSп} @ 230° С	5 sec. dwell	15
Hermeticity	MIL-STD-883 Method 1014	KR-85/Dry N ₂ Penetrant Dye	N/A	15
Moisture Resistance	MIL-STD-202 Method 106	65° C/98% R.H.	10 days	15
Vibration Variable Frequency	MIL-STD-750 Method 2056	100 to 2,000 Hz	4 Cycles @ Sweep Rate < 4 min.	15
Mechanical Shock	MIL-STD-883 Method 2002	Acceleration @ 1500G's	0.5 msec. Pulse Duration	15
Terminal Strength	MIL-STD-750 Method 2036.3	TBA (Package Related)	30 sec. duration	15

Mean Time to Failure (MTTF) vs. Junction Temperature

Curve	MTTF (Hours)	Ty	Activation Energy	Part Number
Α	3.5 x 10 ⁶	125° C	1.1 eV	HXTR-5000 series, HXTR-3002, -3102, and -3104.
В	1.0 × 10 ⁷	200° C	1.1 eV	HXTR-3001, -3101, -3103, -3615, -3645, 3675, and -4101 HXTR-2000, -6000, and -7000 series

- Notes:

 1. To determine MTTF, calculate T_j = P_T x Θ_{JC} + T_{CASE} and refer to the appropriate curve.

 2. To determine the maximum bias conditions (P_T ≃ V_{CE} x I_C) to achieve a minimum MTTF, refer to the appropriate curve for T_j max

 The state maximum P_T ratings specified for the transistor. and calculate P_{T} $max = \frac{T_{J} max - T_{CASE}}{\Theta_{JC}}$. Do not exceed the absolute maximum P_{T} ratings specified for the transistor.

ABSTRACTS OF APPLICATION NOTES AND BULLETINS

The Microwave Semiconductor Division field sales force is supported by a division applications staff. These technical specialists investigate circuit applications of most interest to the users of these semiconductor devices. The results of these investigations are reported in application notes or in brief application bulletins. Many of these publications have been presented in the appropriate catalog sections in condensed form. A complete list with brief abstracts is presented here.

Below is a brief summary of Application Notes and Bulletins for diodes and transistors. All of the Application Notes and Bulletins are available from your local HP Sales Office or nearest HP Components Authorized Distributor or Representative.

Bipolar Applications

944-1 Microwave Transistor Bias Considerations

A practical discussion of the temperature dependent variables in a microwave transistor that cause RF performance degradation due to changes in quiescent point. Passive circuit networks that minimize quiescent point drift with temperature are analyzed, and the general equations for do stability factors are given. Emphasis on practical circuit design is highlighted by typical circuit examples.

967 A Low Noise 4 GHz Amplifier Using the HXTR-6101 Silicon Bipolar Transistor

Describes in detail the design of a single-stage, state-of-theart, low noise amplifier at 4 GHz using the HXTR-6101 silicon bipolar transistor. Both the input and output matching networks are described.

972 Two Telecommunications Power Amplifiers for 2 and 4 GHz Using the HXTR-5102 Silicon Bipolar Power Transistor

Describes in detail the design of two linear power amplifiers using the HXTR-5102. In each case, small signal Sparameters and power contours are used in the design.

974 Die Attach and Bonding Techniques for Diodes and Transistors

Several package and chip devices are available for use in hybrid circuits. This application note provides detailed instructions for attaching and bonding these devices.

975 A 4.3 GHz Oscillator Using the HXTR-4101 Bipolar Transistor

A general technique for transistor oscillator design is illustrated with the details of a 4.3 GHz bipolar oscillator. Small signal S-parameters are used for a preliminary non-oscillating circuit. Measurements of this circuit yield the information needed to complete the circuit design.

980 A Cost Effective Amplifier Design Approach at 425 MHz Using the HXTR-3101 Silicon Bipolar Transistor

The HXTR-3101, simplified matching networks, and offthe-shelf components are used in an amplifier design which achieves a gain of 13.5 dB at 425 MHz. Construction details include the circuit board layout and component placement.

981 The Design of a 900 MHz Oscillator with the HXTR-3102

This application note describes two useful techniques for determining the optimum load impedance for an oscillator. The device-line technique applies to an initial circuit, with a negative input resistance at the design frequency, that does not oscillate when loaded by a 50 ohm system, and the load-pull technique applies to an initial circuit that is already oscillating. These techniques are used to design a very efficient 900 MHz oscillator.

982 A 900 MHz Driver Amplifier Stage Using the HXTR-3102

A modified version of the "load-pull" technique is used in the design of a power driver amplifier stage at 900 MHz. The final output power is 21.5 dBm at 900 MHz. Design and construction details are provided.

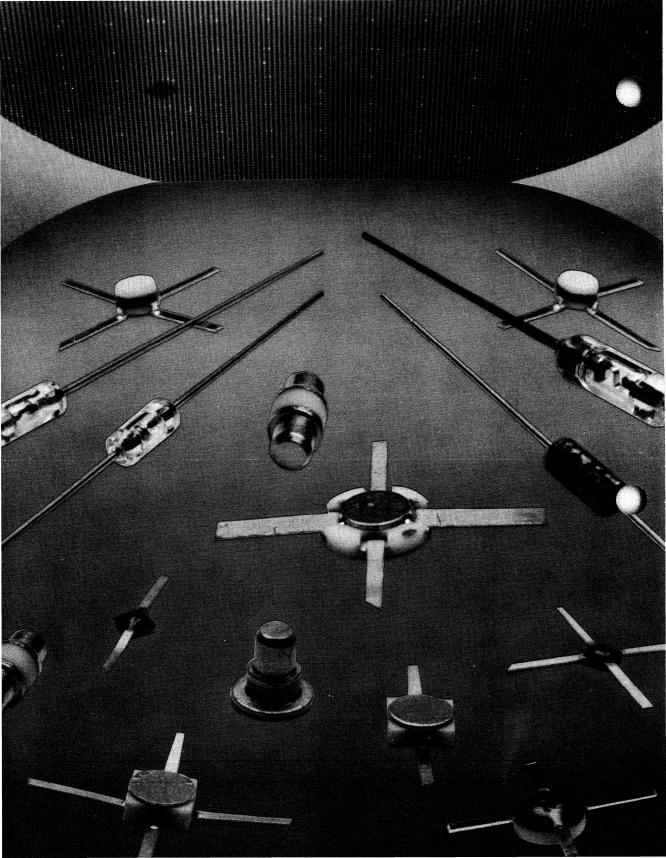
AB 9 Derivation, Definition and Application of Noise Measure

The associated gain at optimum noise figure bias becomes an important parameter at microwave frequencies. The noise measure of a device is a term including both noise figure and associated gain.

AB 10 Transistor Noise Measurements

The increasing acceptance of GaAs field effect and silicon bipolar transistors in low noise pre-amp applications has stressed the importance of the techniques used in measuring noise figure. This application bulletin discusses the various techniques and possible sources of error in making a transistor noise figure measurement.

AB 13 Transistor Speed Up Using Schottky Diodes


Significant reduction in transistor switching delay time can be activated by adding a Schottky diode and a PIN diode to the transistor switching circuit. This improvement in switching performance also extends the oscillator capability of the transistor to higher frequencies.

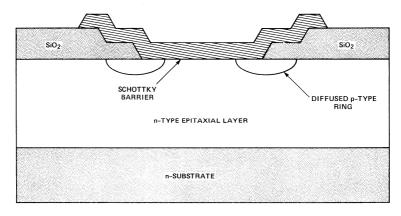
AB 17 Noise Parameters and Noise Circles for the HXTR-6101, -6102, -6103, -6104 and -6105 Low Noise Transistors

Noise figures as a function of source reflection coefficient (Γ_s) can be expressed using three parameters, F_{min}, R_n and Γ_o known as noise parameters. These parameters are presented for five microwave transistors. The method of generating noise circles is given in a step-by-step fashion.

AB 18 The Performance of the HXTR-6101 at Submilliampere Bias Levels

Describes the performance of a low noise microwave transistor at bias conditions of VCE = 3V and IC = 1.0 mA, 0.5 mA, 0.25 mA and frequencies 1.0, 1.5, 2.0, and 3.0 GHz.

Schottky Barrier Diodes


Characteristics	
Applications	116
Selection Guide	118
Alphanumeric Index	121
Chips	125
Beam Leads	127
Beam Lead Diodes	140
Packaged Devices	141
High Reliability Data	169
Reliability Data	194
Abstracts of Application Notes	
and Bulletins	209

CHARACTERISTICS OF SCHOTTKY BARRIER DIODES

A Schottky barrier diode contains a metalsemiconductor barrier formed by deposition of a metal layer on a semiconductor. The resulting non-linear diode is similar to point contact diodes and p-n junction diodes. The Schottky diode is more rugged than the point contact diode because the contact is not subject to change under vibration. The advantage over the p-n junction is the absence of minority carriers which limit the response speed in switching applications and the high frequency performance in mixing and detecting applications.

Types of Diode Construction

There are several assembly geometries used for Schottky barrier diodes. Three types used in this catalog are shown in Figure 1.

HYBRID SCHOTTKY BARRIER DIODE

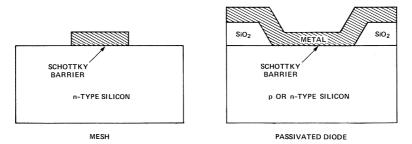


Figure 1. Three Types of Schottky Barrier Diodes

Mesh Diodes

Hewlett-Packard's patented mesh diode is made by depositing metal through a screen to the semiconductor surface. Many closely spaced diodes are created on the chip. The diode contacts are too small for thermocompression bonding. Contact is made by pressing a sharp metal point against one of the metal contacts on the diode. The large number of contacts on the chip provide a good yield to this operation. Although the mesh contacts are too small for thermocompression bonding, they are not small enough for operation at high microwave frequencies. It is not possible to deposit reliable contact areas small enough for operation at frequencies above 7 GHz; in fact, the highest test frequency is 3 GHz. These mesh devices have model numbers in the series 5082-2300, 2400, 2500 and 2900.

Passivated Diodes

The problem of creating small area contacts was solved by the development of the passivated diode process. An oxide layer is formed over the entire silicon area. Then photolithographic techniques are used to open a small hole in the oxide.

The appropriate metal is deposited in the hole to make the small area Schottky barrier. Then gold is deposited to provide a larger surface for the thermocompression bond in ceramic packaged diodes (outlines 44 or 49) or for the pressure contact in glass packaged diodes (outline 15). (Silver is used for the 5082-2835.) Passivated diodes include the 5082-2835, the 5082-2750 series, zero bias detectors, and all diodes in outlines 44 and 49. These devices are used at frequencies up to 40 GHz.

This passivation process is also used in our beam lead diodes. The final gold layer becomes the beam lead itself. Beam lead diodes contain a nitride layer on the oxide to provide immunity from contaminants that could otherwise lead to reverse current drift. There is also a platinum layer between the barrier metal and the gold. This layer permits reliable operation at higher temperatures. Breakdown voltage for passivated type beam lead diodes is 4 volts minimum at 10 microamps.

Beam lead single diodes are included in the HSCH-5300 series, pairs in the HSCH-5500 series, and quads in the 5082-9300 and 5082-9600 series. These beam lead diodes are also available in package outlines C2, C4, E1, H2, and H4.

Hybrid Diodes

The breakdown voltage limitation was solved with the invention of the hybrid process. Hewlett-Packard's patented process combines a Schottky diode with a p-n junction, eliminating the premature breakdown of the passivated diode without sacrificing the picosecond switching response of the Schottky barrier. Breakdown voltage specifications as high as 70 volts are available. Hybrid diodes are numbered from 5082-2800 to 2826 and also 5082-2836. The beam lead version is 5082-2837.

The dual nature of the hybrid diode limits the lowest capacitance to a picofarad. This limits

the high frequency guaranteed performance of these diodes to 2 GHz.

Hybrid chips are assembled in an inexpensive glass package (outline 15) with a C-shaped spring contact. The presence of the spring limits the speed of assembly and therefore the cost. The double stud package (outline 12) eliminates the spring by contacting the chip directly between two leads. A new hybrid chip was developed to withstand the higher temperatures used in this automatic assembly process. These low cost diodes are called HSCH-1001 or 1N6263.

The Height of the Schottky Barrier

The current-voltage characteristic of Schottky barrier diodes at room temperature is described by the following equation:

$$I = I_{S} \left(exp \left(\frac{V - IR_{S}}{0.026} \right) - 1 \right)$$

For currents below 0.1 mA, the IRs term may be neglected. On semi-log graph paper, as plotted in this catalog, the current graph will be a straight line with inverse slope 2.3 x 0.026 = 0.060 volts per cycle. All curves have the same slope, but not necessarily the same value of current for a given voltage. This is determined by the saturation current, Is, and is related to the type of metal deposited on the silicon and to the treatment of the silicon surface layer. The term "barrier height" is related to the voltage required for a given current. Low voltage corresponds to low barrier.

Study of the forward characteristics in this catalog shows that the lowest barrier diode is the HSCH-3486 family of zero bias detectors. Detection at zero bias is possible for a range of barrier heights, but the voltage sensitivity is best for high barrier diodes. The sensitivity degrades for barrier heights less than that of the HSCH-3486. The other extreme is represented by medium barrier mixer diodes such as the 5082-2701. However, this barrier height corresponds to a zero bias junction resistance that requires a load resistance above 10 megohms. Zero bias detection with these diodes is limited to single frequency applications.

APPLICATIONS OF SCHOTTKY BARRIER DIODES

Schottky barrier diodes are useful in a wide variety of applications over a broad frequency range from digital to microwave.

General Purpose Diodes

The HSCH-1001 and similar diodes are useful for clipping, clamping, and speed up of transistor switching. These applications are discussed in Application Note 942, *Schottky Diodes for High Volume Low-Cost Applications*, and in several application bulletins described in the abstracts section of this catalog.

Mixers

The most sensitive receivers using Schottky barrier diodes make use of the nonlinear properties of the diode to produce a difference frequency by mixing the received signal with a local oscillator. Although this can be done with a single diode, it is more common to use multiple diodes in balanced or double balanced mixers. Balanced circuits reduce the effect of a noisy local oscillator and also reduce the level of high order mixing products that are not related to the desired input frequency. For multiple diode mixers, batch matched devices or matched pairs are available.

The most important property of mixer diodes is the noise figure — a measure of how small a signal can be received. The noise level for a perfect receiver is -114 dBm per MHz of bandwidth. A 6 dB noise figure mixer will degrade the noise level to -108 dBm per MHz. If the bandwidth of the receiver is 4 MHz the noise level is raised to -102 dBm. If a 10 dB signal to noise level is required for proper operation of the receiver, the sensitivity is -92 dBm. In this section of the catalog there are several groups of single diodes characterized for mixer applications. For stripline circuits the hermetic H-2, broadband C-2, and beam lead outlines are available. The best diodes are guaranteed to have a noise figure less than 6.0 dB at 9.375 GHz.

The other group of mixer diodes uses outline 15, glass package, for 2 and 3 GHz and outlines 44 and 49, ceramic packages, for 9.375 and 16 GHz. The best units have a 6 dB noise figure with the exception of the 16 GHz devices with a 6.5 dB prime unit.

Applications such as Doppler radar involving intermediate frequencies below 1 MHz will benefit by using the 5082-2400 or -2565 with its lower noise at these output frequencies. The additional noise (flicker noise) varies inversely with difference frequency and may differ as much as 20 dB from one diode type to another. Since the lowest capacitance (passivated) diodes (measured at 9.375 or 16 GHz) have the highest flicker noise, it is sometimes better to choose a Doppler mixer diode for lowest flicker noise rather than for lowest published noise figure.

Another type of mixer diode is the Schottky quad used for double balanced mixers. These quads are available in beam lead versions and in outlines E1, C4 and H4. These units contain a monolithic beam lead quad — four diodes connected in a ring configuration by gold deposited and plated on the wafer. Since the four diodes are made at the same time on the same portion of a wafer, they are nearly identical and ideally suited for double balanced mixers.

In most cases both medium and low barrier models are available. The low barrier units have an impedance closer to 50 ohms. These models give better performance in broad band untuned circuits, particularly in those applications with local oscillator power below normal.

Detector Applications

For system applications with relaxed requirements on sensitivity the video detector receiver is a good alternative to the superheterodyne receiver. The sensitivity is degraded about 50 dB, but the circuitry is simplified and broad bandwidth is easily attained without the problem of tracking the local oscillator frequency.

The important parameters are tangential signal sensitivity (TSS) and voltage sensitivity (γ). Both of these, as well as video resistance (Rv), are guaranteed for these detector diodes. Typical detector performance is shown for mixer diodes, but detector diodes are designed for superior performance for this application.

Tangential signal sensitivity measures the ability of the diode to distinguish a small signal

from noise. The name relates to a type of radar display with the bottom of the signal pulse tangent to the top of the noise level. There are subjective aspects to this measurement so that TSS measurement is now made with a voltmeter. The value depends on diode noise as well as detection capability.

In some applications, the detector is used as a monitor and the measurement level is well above the noise. For these applications, voltage sensitivity, voltage output for one microwatt input, is the important parameter.

The third specification, video resistance (Rv), is important for video amplifier and response time considerations. The video amplifier resistance, RL, should be large compared to Rv because the maximum output voltage is degraded by the factor

However, response time is proportional to the RC product. If fidelity to pulse shape is important, the presence of pulses with steep edges requires a smaller value of load resistance. Sensitivity must be sacrificed for fidelity.

Zero bias Schottky detector diodes are available in the glass package (outline 15) and

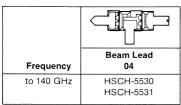
ceramic packages (outlines 44 and 49). Two types of metal to semiconductor junctions are used, resulting in two distinct ranges of junction resistance (video resistance). Since voltage sensitivity varies with resistance, the high resistance diodes have better voltage sensitivity. However, high resistance means higher noise so the TSS specifications are better for the low resistance diodes. All tests are done at 10 GHz.

The other type of detector diode (5082-2824 and -2750 series) requires a small forward bias. Production tests are made with 20 microamperes of bias which reduces the video resistance to about 1300 ohms. At zero bias the resistance is higher than for either one of the zero bias detectors. Although the statement has been made that high resistance corresponds to good sensitivity, the resistance is so high for these models (40 megohms for the 2750 series) that the sensitivity is degraded by normal load resistances. These diodes can be used without bias if the load resistance is comparable to the diode resistance. This is discussed in AN988 — All Schottky Diodes are Zero Bias Detectors.

The 5082-2824 diode is tested at 2 GHz. The 2750 series is supplied in outlines 15, 44, and 49 and tested at 10 GHz. The 5082-2787 is similar to the 2755 in outline 15 with the parameters sample tested to reduce cost.

SCHOTTKY DIODE SELECTION GUIDE

Schottky barrier diodes are useful in a wide variety of applications over a broad frequency range from digital to microwave. To assist you in choosing the appropriate Schottky diode for your application, a selection guide has been prepared. Schottky diodes have been classified as general purpose diodes, mixers, and detectors. Further assistance is provided by selection tables specifying package styles and operating frequency band. All Schottky diode package outlines are shown in the Package Outline Index, beginning on page 310.


TABLE I. GENERAL PURPOSE SCHOTTKY SELECTION GUIDE

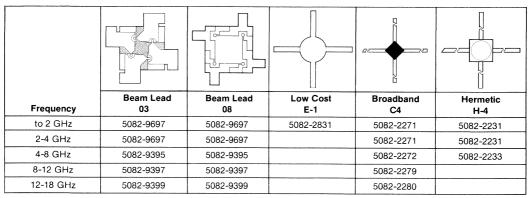
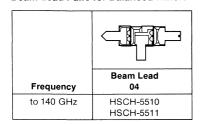
Glass Packaged Diodes	. 141
Chips for Epoxy and Eutectic Die Attach	. 125
Beam Lead Diodes	. 131

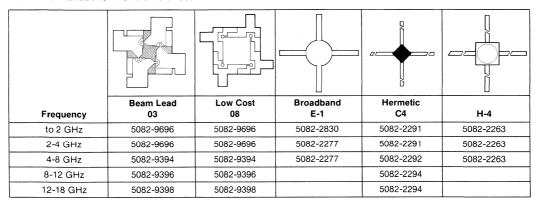
TABLE II. LOW BARRIER SCHOTTKY DIODES FOR MIXERS

	0				
Frequency	Chip 01	Beam Lead 07	Ceramic/Epoxy C2	Hermetic H2	Ceramic Pill 44
to 12 GHz	5082-0013	HSCH-5336 HSCH-5338	5082-2774 5082-2794	5082-2765 5082-2785	5082-2295 5082-2297
12—18 GHz	5082-0013	HSCH-5332 HSCH-5334	5082-2774		5082-2295
to 140 GHz		HSCH-5330			

Beam Lead Pairs for Balanced Mixers

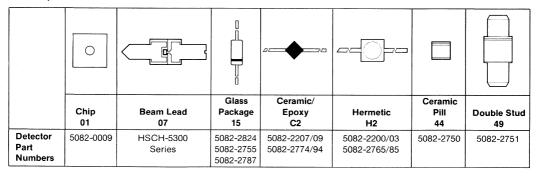
Beam Lead Quads for Double Balanced Mixers


TABLE III. MEDIUM BARRIER SCHOTTKY DIODES FOR MIXERS

	0						
Frequency	Chip 01	Beam Lead 07	Glass Package 15	Ceramic/ Epoxy C2	Hermetic H2	Ceramic Pill 44	Double Stud 49
to 2 GHz	5082-0087	HSCH-5316	5082-2817 5082-2400 5082-2350	5082-2210	5082-2203	5082-2707	5082-2712
2-4 GHz	5082-0023	HSCH-5316	5082-2565 5082-2520	5082-2210	5082-2203	5082-2707	5082-2712
4-12 GHz	5082-0023	HSCH-5316 HSCH-5318		5082-2207 5082-2209	5082-2200 5082-2202	5082-2701 5082-2702	5082-2713 5082-2711
12-18 GHz	5082-0029	HSCH-5312 HSCH-5314		5082-2207		5082-2273	5082-2723
to 140 GHz		HSCH-5310					

Beam Lead Pairs for Balanced Mixers



Beam Lead Quads for Double Balanced Mixers

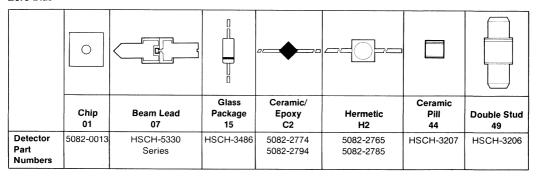


TABLE IV. DETECTOR SELECTION GUIDE

Bias Required

Zero Bias

SCHOTTKY BARRIER DIODE ALPHANUMERIC INDEX

			Page Number	
Part No.	Description	Commercial Data Sheet	Standard Hi-Rel Data Sheet	Reliability Data Sheet
HSCH-0812 HSCH-0813 HSCH-0814 HSCH-0815 HSCH-0816	Hi Rel Zero Bias Schottky (HSCH-3486) Matched Pair HSCH-0814 (5082-2401) Hi Rel Schottky Barrier Diode (5082-2400) Matched Pair HSCH-0816 (5082-2306) Hi Rel Schottky Barrier Diode (5082-2301)		192 176 176 176 176	203 203 203 203 203
HSCH-1001 HSCH-1111 HSCH-3206 HSCH-3207 HSCH-3486	General Purpose Schottky Diode (1N6263) Hi Rel Schottky Chip Zero Bias Detector Schottky Diode Zero Bias Detector Schottky Diode Zero Bias Detector Schottky Diode	141 161 161 161	170 192	195 195 205 205 203
HSCH-5310 HSCH-5311 HSCH-5312 HSCH-5313 HSCH-5314	Medium VF Schottky Beam Lead Batch Matched HSCH-5310 Medium VF Schottky Beam Lead Batch Matched HSCH-5312 Ku Band Medium VF Schottky Beam Lead	127 127 127 127 127 127		197, 199 197, 199 197, 199 197, 199 197, 199
HSCH-5315 HSCH-5316 HSCH-5317 HSCH-5318 HSCH-5319	Batch Matched HSCH-5314 Medium VF Schottky Beam Lead Batch Matched HSCH-5316 X-Band Medium VF Schottky Beam Lead Batch Matched HSCH-5318	127 127 127 127 127 127		197, 199 197, 199 197, 199 197, 199 197, 199
HSCH-5330 HSCH-5331 HSCH-5332 HSCH-5333 HSCH-5334	Low VF Schottky Beam Lead Batch Matched HSCH-5330 Low VF Schottky Beam Lead Batch Matched HSCH-5332 Ku Band Low VF Schottky Beam Lead	127 127 127 127 127 127		197, 199 197, 199 197, 199 197, 199 197, 199
HSCH-5335 HSCH-5336 HSCH-5337 HSCH-5338 HSCH-5339	Batch Matched HSCH-5334 Low VF Schottky Beam Lead Batch Matched HSCH-5336 X-Band Low VF Schottky Beam Lead Batch Matched HSCH-5338	127 127 127 127 127 127		197, 199 197, 199 197, 199 197, 199 197, 199
HSCH-5510 HSCH-5511 HSCH-5530 HSCH-5531 JAN 1N5711	Ku Band Med V _F Schottky Beam Lead Pair Med V _F Schottky Beam Lead Pair Ku Band Low V _F Schottky Beam Lead Pair Low V _F Schottky Beam Lead Pair MIL-S-19500/444 Schottky Diode	133 133 133 133	178	197, 199 197, 199 197, 199 197, 199 195
JAN 1N5712 JANTX 1N5711 JANTX 1N5712 JANTXV 1N5711 JANTXV 1N5712	MIL-S-19500/445 Schottky Diode MIL-S-19500/444 Schottky Diode MIL-S-19500/445 Schottky Diode MIL-S-19500/444 Schottky Diode MIL-S-19500/445 Schottky Diode		182 178 182 178 182	195 195 195 195 195
TXVB-2810 TXVB-2811 TXVB-2835 TXVW-5300 Series TXVW-5500 Series	Hi-Rel 5082-2810 Hi-Rel 5082-2811 Hi-Rel 5082-2835 Hi-Rel HSCH-5300 Beam Leads Hi-Rel HSCH-5500 Beam Leads		186 186 189 172 172	195 195 195 197, 199 197, 199

			Page Number	
Part No.	Description	Commercial Data Sheet	Standard Hi-Rel Data Sheet	Reliability Data Sheet
1N5711 1N5712	H V General Purpose Schottky Diode (5082-2800) General Purpose Schottky Diode (5082-2810)	141 141	178 182	195 195
1N6263 5082-0009 5082-0013 5082-0023 5082-0024	General Purpose Schottky Diode (HSCH-1001) X-Band Schottky Detector Chip Low VF Mixer/Zero Bias Detector Schottky Chip X-Band Schottky Mixer Chip High Voltage Switching Schottky Chip	141 125 125 125 125	170	195 207 205 205 195
5082-0029 5082-0031 5082-0041 5082-0057 5082-0058	Ku-Band Schottky Mixer Chip General Purpose Switch Schottky Chip X-Band Schottky Mixer Chip General Purpose Schottky Diode Chip General Purpose Schottky Diode Chip	125 125 125 125 125		205 195 205 195 195
5082-0087 5082-0094 5082-0097 5082-2080 5082-2200	General Purpose Schottky Chip General Purpose Schottky Diode Chip General Purpose Schottky Chip Batch Matched 5082-2835 Schottky Hermetic Stripline Schottky Diode	125 125 125 141 146		195 195 195 195 197
5082-2201 5082-2202 5082-2203 5082-2207 5082-2208	Batch Matched 5082-2200 Hermetic Stripline Schottky Diode Batch Matched 5082-2202 Stripline Schottky Diode Batch Matched 5082-2207	146 146 146 146 146	:	197 197 197 197 197
5082-2209 5082-2210 5082-2231 5082-2233	Stripline Schottky Diode Batch Matched 5082-2209 Low V _F Hermetic Stripline Schottky Quad Low V _F Hermetic Stripline Schottky Quad	146 146 151		197 197 201
5082-2263 5082-2271 5082-2272 5082-2273 5082-2274 5082-2277 5082-2279 5082-2280	Hermetic Stripline Schottky Ring Quad Low VF Stripline Schottky Diode Quad Low VF Stripline Schottky Diode Quad Ku-Band Schottky Mixer Diode Matched pair of 5082-2273 C-Band Stripline Schottky Ring Quad Low VF Broadband Stripline Schottky Quad Low VF Broadband Stripline Schottky Quad	151 151 151 154 154 151 151		201 201 201 205 205 201 201 201
5082-2291 5082-2292 5082-2294 5082-2295 5082-2296	Stripline Schottky Ring Quad Stripline Schottky Ring Quad Stripline Schottky Ring Quad X-Band Low VF Schottky Diode Matched pair of 5082-2295	151 151 151 154 154		201 201 201 205 205
5082-2297 5082-2298 5082-2301 5082-2302 5082-2303	X-Band Low VF Schottky Diode Matched pair of 5082-2297 Schottky Barrier Diode Schottky Barrier Diode Schottky Barrier Diode Schottky Barrier Diode	154 154 141 141 141	176	205 205 203 203 203

		Page Number				
Part No.	Description	Commercial Data Sheet	Standard Hi-Rel Data Sheet	Reliability Data Sheet		
5082-2305	Schottky Barrier Diode	141		203		
5082-2306	Matched pair of 5082-2301	141	176	203		
5082-2308	Matched pair of 5082-2303	141	·	203		
5082-2350	Schottky Barrier Diode	154		203		
5082-2351	Matched pair of 5082-2350	154		203		
5082-2356	Matched Encapsulated Bridge Quad	141		203		
5082-2370	Matched Quad of 5082-2303 Unconnected	141		203		
5082-2396	Matched Encapsulated Ring Quad	141		203		
5082-2400	Schottky Barrier Diode	154	176	203		
5082-2401	Matched pair of 5082-2400	154	176	203		
5082-2520	Schottky Barrier Diode	154		203		
5082-2521	Matched pair of 5082-2520	154		203		
5082-2565	Schottky Barrier Diode	154		203		
5082-2566	Matched pair of 5082-2565	154]	203		
5082-2701	X-Band Schottky Mixer Diode	154		205		
5082-2702	X-Band Schottky Mixer Diode	154		205		
5082-2706	Matched pair of 5082-2701	154		205		
5082-2707	Matched pair of 5082-2702	154		205		
5082-2711	X-Band Schottky Mixer Diode	154		205		
5082-2712	Matched pair of 5082-2711	154		205		
5082-2713	X-Band Schottky Mixer Diode	154		205		
5082-2714	Matched pair of 5082-2713	154		205		
5082-2723	Ku-Band Schottky Mixer Diode	154		205		
5082-2724	Matched pair of 5082-2723	154		205		
5082-2750	Schottky Detector Diode	165		207		
5082-2751	Schottky Detector Diode	165		207		
5082-2755	Schottky Detector Diode	165		203		
5082-2765	Low V _F Hermetic Stripline Schottky	146		197		
5082-2766	Batch Matched 5082-2765	146		197		
5082-2774	Low V _F Stripline Schottky Diode	146		197		
5082-2775	Batch Matched 5082-2774	146		197		
5082-2785	Low V _F Hermetic Stripline Schottky	146		197		
5082-2786	Batch Matched 5082-2785	146		197		
5082-2787	Schottky Detector Diode	165		203		
5082-2794	Low V _F Stripline Schottky Diode	146		197		
5082-2795	Batch Matched 5082-2794	146		197		
5082-2800	H V General Purpose Schottky Barrier					
	Diode (1N5711)	141	-	195		
5082-2804	Matched Pair of 5082-2800 Unconnected	141		195		
5082-2805	Matched Quad 5082-2800 Unconnected	141	1	195		
		141	100	195		
5082-2810	General Purpose Schottky Diode (1N5/12)	141	186	195		
5082-2810 5082-2811	General Purpose Schottky Diode (1N5712) General Purpose Schottky Diode	141	186	195		

		Page Number				
Part No.	Description	Commercial Data Sheet	Standard Hi-Rel Data Sheet	Reliability Data Sheet		
5082-2814 5082-2815 5082-2817 5082-2818 5082-2824	Matched Ring Quad 5082-2811 Encapsulated Matched Quad 5082-2811 Unconnected Schottky Barrier Diode Matched Pair of 5082-2817 Schottky Barrier Diode	141 141 154 154 165		195 195 195 195 195		
5082-2826 5082-2830 5082-2831	Batch Matched Diode 5082-2811 Monolithic Matched Schottky Diode Ring Quad Low V _F Monolithic Matched Schottky	141 151		195 201		
5082-2835 5082-2836	Quad 5082-9697 Low Offset Schottky Diode Batch Matched Diode 5082-2800	141	189	201 195 195		
5082-2837 5082-2900 5082-2912 5082-2970 5082-2997	Schottky Diode Beam Lead Schottky Barrier Diode Matched pair of 5082-2900 Unconnected Matched Quad 5082-2900 Unconnected Matched Bridge Quad 5082-2900 Encapsulated	131 141 141 141 141		197, 199 203 203 203 203 203		
5082-9394 5082-9395 5082-9396 5082-9397 5082-9398	Beam Lead Quad Beam Lead Quad Beam Lead Quad Beam Lead Quad Beam Lead Quad	137 137 137 137 137		201 201 201 201 201		
5082-9399 5082-9696 5082-9697 5082-9891	Beam Lead Quad Beam Lead Quad Beam Lead Quad X-Band Schottky Detector Chip	137 137 137 125		201 201 201 207		

SCHOTTKY BARRIER CHIPS FOR HYBRID INTEGRATED CIRCUITS

5082-0009 5082-0057 5082-0013 5082-0058 5082-0023 5082-0087 5082-0024 5082-0094 5082-0029 5082-0997 5082-0031 5082-9891

Features

IDEAL FOR HYBRID INTEGRATED CIRCUITS

PLANAR PASSIVATED CONSTRUCTION

UNIFORM ELECTRICAL CHARACTERISTICS

AVAILABLE IN MANY ELECTRICAL SELECTIONS

HIGH REL LOT QUALIFICATION TESTING AVAILABLE

Outline 01 Chip Dimensions

Description

These Schottky chips are designed for hybrid applications at DC through K-band frequencies. The passivated planar construction of these Schottky chips provides a wide temperature range capability combined with broad bandwidth performance.

Maximum Ratings

Junction Operating and Storage Temperature 5082-0024, -0057, -0058, -0087, -0094, -0097 -0097 -65°C to +200°C 5082-0009, -0013, -0023, -0029, -0031, -0041, -9891 -65°C to +150°C

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷ hours.

	HP Part Number 5082-							
Dimension	0024, 0057,0058 0094 0087,0097		0031	0013, 0023, 0029	0009			
D	0,10 (4)			0.02 (0.80)				
Y		0,13 (5)		0.1((4)				
Top Contact	Au, Anode	Au, Anode	Au, Anode	Au, Anode	Au, Cathode			
Bottom Contact	Au, Cathode	Au, Cathode	Au, Cathode	Au, Cathode	Au, Anode			

Dimensions Tolerance ±0.03 (1) in Millimeters and (1/1000 inch)

Applications

A wide variety of chips are provided which are optimized for various applications. Typical applications of Schottky chips are mixing, detecting, switching, gating, sampling and wave shaping.

Electrical Specifications at 25°C

SCHOTTKY BARRIER CHIPS FOR GENERAL PURPOSE APPLICATIONS

Part Number 5082-		hip for Equivalent Equivalent poxy or Chip for Packaged Beam Lead Ider Die Eutectic Part No. Part No.		100		
Solder Die Eutectic				Minimum Breakdown Voltage V _{BR} (V)	Minimum Forward Current I _F (mA)	Maximum Junction Capacitance Cjo (pF)
0024	0094	2800	2837	70	15	1.7
0087	0057	2810		20	35	1.0
0097	0058	2811	6-10	15	20	1.1
0031		2835		8(1)	10[1]	0.8
Test Co	onditions			$I_{R} = 10 \ \mu A$ $I_{1}I_{R} = 100 \ \mu A$	$V_F = 1 V$ $[1]V_F = 0.45 V$	$V_R = 0 V$ f = 1 MHz

SCHOTTKY BARRIER CHIPS FOR MIXING AND DETECTING

Part Nu	mber 5082-	Nearest	Nearest	
Chip	9 Contact Chip	- Equivalent Packaged Part No. 5082-	Equivalent Beam Lead Part No. HSCH-	Maximum Junction Capacitance Cjo (pF)
0023	0041	2713	5316	0.18
0029		2721	5312	0.13
0013		HSCH-3206* 2295	5332	0.13
0009	9891	2750	and the second second	0.10
Test Conditions		*Zero Bias		V _R = 0 V f = 1 MHz

Typical Parameters						
Noise Figure NF (dB) ^[1]	Tangential Sensitivity T _{SS} (dBm)					
6.0	-54					
6.0 7.0**	- 54					
6.0	42† -54					
7.0	-55					
f = 9.375 GHz **f = 16 GHz	f = 10 GHz BW = 2 MHz I _{BIAS} = 20 μA †Zero Bias					

Note 1: NF includes 1.5 dB for the IF amplifier.

Assembly and Handling Procedures for Schottky Chips

1. Cleaning

To remove surface contamination, electronic grade solvents such as freon (T.F. or T.M.C.) trichloroethane, acetone, de-ionized water, and methanol used singularly or in combinations are recommended. Typical cleaning times per solvent are one to three minutes. DI water and methanol should be used (in that order) in the final cleans. Final drying can be accomplished by placing the cleaned dice on clean filter paper and drying with an infrared lamp, for 5-10 minutes. Acids such as hydrofluoric (HFC), nitric (HNC) and hydrochloric (HCL) should not be used.

The effects of cleaning methods/solution, should be verified on small samples prior to submitting the entire lot.

Following cleaning, dice should be either used in assembly (typically within a few hours), or stored in clean containers in a reducing (O_2-N_2) atmosphere or a vacuum chamber.

2. Die Attach

Eutectic — Eutectic die attaching can be accomplished in one of two ways — either by 1.1 "scrubbing" the die without a preform and using the gold on the header to combine with the silicon and or the non-alloyed gold-plating on the back of the die to form the eutectic, or 2.) by utilizing a gold-tin eutectic composition preform and "scrubbing" the chip. Typical stage temperatures of 310°C ± 10°C,

and heating times of 5-10 seconds are recommended. (Note — times and temperatures utilized may vary depending on the type, composition, and heat capacity of the header or substrate used as well as the metallization systems present.)

Preforms with melting points requiring high stage temperatures (exceeding 325°C) and/or longer times (exceeding 30 seconds) are not recommended.

Epoxy/Solder -

- a. For epoxy die-attach, conductive silver or gold-filled epoxies are suggested.
- b. For solder die-attach, lead (Pb) tin (Sn) composition solders are recommended. [Silver (Ag), antimony (Sb), indium (In) and other elements may be present in the base solder]. The preform melting point should be less than 300° C,

The die-attach system (i.e. — furnace, die-attach stage, etc.) should insure that 1.) the preform melting point should not be exceeded by more than 75°C and 2.) a reducing or inert atmosphere is present.

For further reference on die-attach techniques, see Application Note 974 "Die Attach and Bonding Techniques".

3. Wire Bonding

Thermocompression is the recommended bonding method for Hewlett-Packard Schottky chips. Suggested wire is pure gold mesh (333 lines per inch, 1 mil thick) or 0.7 mil wire. Other bonding techniques such as ultrasonic and thermosonic are not recommended. For additional reference material, refer to Application Note 974 "Die Attach and Bonding Techniques".

BEAM LEAD SCHOTTKY DIODES FOR MIXERS AND DETECTORS (1-18 GHz)

HSCH-5300 SERIES

Features

PLATINUM TRI-METAL SYSTEM High Temperature Performance

NITRIDE PASSIVATION
Stable. Reliable Performance

LOW NOISE FIGURE 7 dB Typical at 16 GHz

HIGH UNIFORMITY

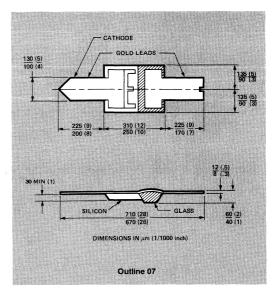
Tightly Controlled Process Insures Uniform RF Characteristics

RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull

Description

These beam lead diodes are constructed using a metal-semiconductor Schottky barrier junction. Advanced epitaxial techniques and precise process control insure uniformity and repeatability of this planar passivated microwave semiconductor. A nitride passivation layer provides immunity from contaminants which could otherwise lead to be drift

The HP beam lead process allows for large beam anchor pads for rugged construction (typical 6 gram pull strength) without degrading capacitance.


Pulse Power Incident at T_A = 25° C 1 W

Maximum Ratings

Pulse Width = 1 μ s, Du = 0.001	
CW Power Dissipation at T _A = 25° C	٧
TOPR — Operating Temperature Range65° C to +175° C	С
T _{STG} — Storage Temperature	
Range65° C to +200°	С
Minimum Lead Strength 4 grams pull on either lea	d
Diode Mounting	
Temperature +350° C for 10 sec. max	x.

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷ hours.

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Applications

The beam lead diode is ideally suited for use in stripline or microstrip circuits. Its small physical size and uniform dimensions give it low parasitics and repeatable RF characteristics through K-band.

The basic medium barrier devices in this family are DC tested HSCH-5310, -5312, and -5316. Batch matched versions are available as the HSCH-5311, -5313, and -5317. Equivalent low barrier devices are HSCH-5330, -5332 and -5336. Batch matched versions are available as HSCH-5331, -5333, and -5337.

For applications requiring guaranteed RF performance, the HSCH-5318 is selected for 6.2 dB maximum noise figure at 9.375 GHz, with RF batch match units available as the HSCH-5319. The HSCH-5314 is rated at 7.2 dB maximum noise figure at 16 GHz with RF batch match units available as the HSCH-5315.

For low-barrier RF performance, the HSCH-5338 and -5334 are selected for noise figure 6.2 dB maximum at 9.375 and 7.2 dB maximum at 16 GHz respectively. Batch matched versions are available as the HSCH-5339 and -5335.

Bonding and Handling Procedures

See page 140.

Electrical Specifications for RF tested Diodes at $T_{\mbox{\scriptsize A}}=25^{\circ}\mbox{\scriptsize C}$

Part Number HSCH-	Batch* Matched HSCH-	Barrier	Maximum Noise Figure NF (dB)	Imped Z _{IF} Min.	dance	Maximum SWR	Minimum Breakdown Voltage V _{BR} (V)	Maximum Dynamic Resistance R _D (Ω)	Maximum Total Capacitance C _T (pF)	Maximum Forward Voltage V _F (mV)	
5318	5319	Medium	6.2 at 9.375 GHz	900	200 400	1.5:1	4	12	0.25	500	
5314	5315	Medium	7.2 at 16 GHz	200			4	18	0.15	300	
5338	5339		6.2 at 9.375 GHz	000	200 400				12	0.25	275
5334	5335	Low	7.2 at 16 GHz	200		1.5:1	4	18	0.15	375	
Test Conditions	ΔNF≤0.3dB ΔZ _{IF} ≤25Ω		DC Load Resistance = 0Ω L.O. Power = 1 mW IF = 30 MHz, 1.5 dB NF			IR ≤ 10 μA	I _F = 5 mA	V _R = 0V f = 1 MHz	IF = 1 mA		

^{*}Minimum batch size 20 units.

Electrical Specifications for DC tested Diodes at $T_{\mbox{\scriptsize A}}=25^{\circ}\mbox{\scriptsize C}$

Parl Number HSCH-	Batch* Matched HSCH-	Barrier	Minimum Breakdown Voltage V _{BR} (V)	Maximum Dynamic Resistance R _D (Ω)	Maximum Total Capacitance C _T (pF)	Maximum Forward Voltage V _F (mV)
5316	5317			12	0.25	
5312	5313	Medium	4	18	0.15	500
5310	5311			25	0.10	
5336	5337	100		- 12	0.25	
5332	5333	Low	4	18	0.15	375
5330	5331	4.0		25	0.10	
Test Conditions	ΔV _F ≤ 15 mV @ 5 mA		$I_{\rm H} = 10~\mu{\rm A}$	I _F = 5 mA	V _R = 0V f = 1 MHz	I _F = 1 mA

^{*}Minimum batch size 20 units.

Typical Detector Characteristics at $T_A = 25^{\circ}C$

MEDIUM AND LOW BARRIER (DC BIAS)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-54	dBm	20μA Bias
Voltage Sensitivity	γ	6.6	mV/μW	Video Bandwidth = 2 MHz
Video Resistance	R _V	1400	Ω	f = 10 GHz

LOW BARRIER (ZERO BIAS)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-44	dBm	Zero Bias
Voltage Sensitivity	γ	10	mV/μW	Video Bandwidth = 2 MHz
Video Resistance	Rv	1.8	MΩ	f = 10 GHz

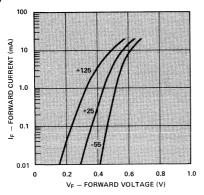


Figure 1. Typical Forward Characteristics, for Medium Barrier Beam Lead Diodes. HSCH-5310 Series.

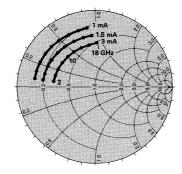


Figure 3. Typical Admittance Characteristics, with Self Bias. HSCH-5314, -5315, -5334, and -5335.

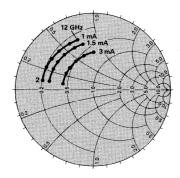


Figure 5. Typical Admittance Characteristics, with Self Bias. HSCH-5318, -5319, -5338 and -5339.

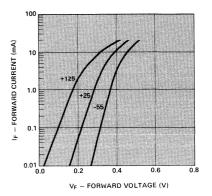


Figure 2. Typical Forward Characteristics, for Low Barrier Beam Lead Diodes. HSCH-5330 Series.

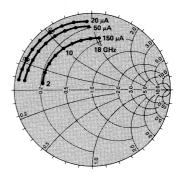


Figure 4. Typical Admittance Characteristics, with External Bias. HSCH-5314, -5315, -5334, and -5335.

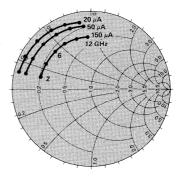


Figure 6. Typical Admittance Characteristics, with External Bias. HSCH-5318, -5319, -5338 and -5339.

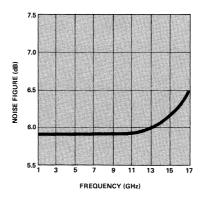
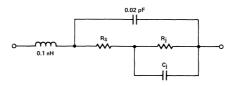



Figure 7. Typical Noise Figure vs. Frequency.

MODELS FOR BEAM LEAD SCHOTTKY DIODES

SELF BIAS

	1.0	mA Self	Bias	1.5	mA Self	Bias	3.0	mA Self	Bias
Part Numbers	Rs	Rj	Cj	Rs	Rj	Cj	Rs	Rj	Cj
HSCH-5314, -5315, -5334, -5335	5.0	393	0.11	5.2	232	0.11	5.0	150	0.12
HSCH-5318, -5319, -5338, -5339	5.1	244	0.16	5.0	178	0.16	5.0	109	0.19

EXTERNAL BIAS

	20	20 μADC Bias		50 μADC Blas			150 μADC Bias		
Part Numbers	R _S	R _i	Cj	R _S	Rj	Cj	Rs	Rj	Cj
HSCH-5314, -5315, -5334, -5335	2.8	1240	0.11	4.7	618	0.12	2.7	211	0.13
HSCH-5318, -5319, -5338, -5339	5.1	2050	0.18	3.9	665	0.19	4.7	242	0.20

BEAM LEAD SCHOTTKY DIODE

5082-2837

Features

FAST SWITCHING

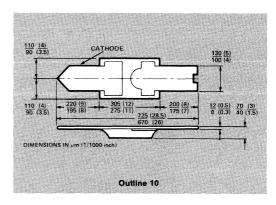
HIGH BREAKDOWN

BEAM LEAD EQUIVALENT OF 5082-2800

PLATINUM TRI-METAL SYSTEM

WIDE TEMPERATURE RANGE

Description


The HP 5082-2837 is an epitaxial planar passivated Beam Lead Diode whose construction utilizes a unique combination of both a conventional PN junction and a Schottky barrier. This manufacturing process results in a device which has the high breakdown and temperature characteristics of silicon, the turn-on voltage of germanium and the speed of a Schottky diode majority carrier device.

This device is intended for high volume, low cost applications, and is the beam lead equivalent of the HP 5082-2800 glass packaged diode.

Maximum Ratings

Operating Temperature Range	65° C to +175° C
Storage Temperature Range .	65° C to +200° C
Minimum Lead Strength	4 grams pull on either lead
Diode Mounting Temperature	350°C for 10 sec may

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷ hours.

Applications

High level detection, switching, or gating; logarithmic or AD converting; sampling or wave shaping are jobs the 5082-2837 will do better than conventional PN junction diodes. The low turn-on voltage and subnanosecond switching makes it extremely attractive in digital circuits for DTL gates, pulse shaping circuits or other low level applications. Its high PIV allows wide dynamic range for fast high voltage sampling gates.

The 5082-2837 low turn-on voltage gives low offsets. The extremely low stored charge minimizes output offsets caused by the charge flow in the storage capacitor. At UHF, the diodes exhibit 95% rectification efficiencies. Both their low loss and their high PIV allow the diodes to be used in mixer and modulator applications which require wide dynamic ranges.

The combination of these technical features with the low price make these devices the prime consideration for any hybrid dc or RF circuit requiring nonlinear elements.

Bonding and Handling Procedures

See page 140.

Electrical Specifications at T_A =25°C

Specification	Symbol	Min.	Max.	Units	Test Conditions
Breakdown Voltage	V _{BR}	70		Volts	Ι _R = 10μΑ
Forward Voltage	V _{E1}	_	410	mV	I _{F1} = 1mA
Forward Voltage	V _{F2}	-	1.0	٧	I _{F2} = 15mA
Reverse Leakage Current	I _R		200	nA	V _R = 50V
Capacitance	Co	_	2.0	pF	$V_R = 0V$ and $f = 1MHz$
Effective Minority Carrier Lifetime	7	-	100 *	pS	I _F = 5mA Krakauer Method

^{*} Typical

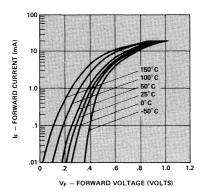


Figure 1. Typical Forward Characteristics

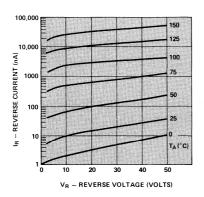


Figure 3. Typical Variation of Reverse Current (IR) vs. Reverse Voltage (VR) at Various Temperatures

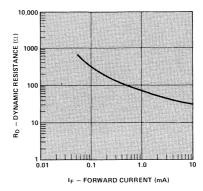


Figure 2. Typical Dynamic Resistance (Rp) vs. Forward Current (IF) $\,$

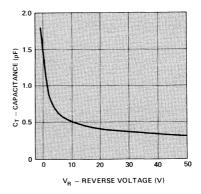


Figure 4. Typical Capacitance (C_T) vs. Reverse Voltage (V_R)

BEAM LEAD SCHOTTKY DIODE PAIRS FOR MIXERS AND DETECTORS

HSCH-5510 HSCH-5511 HSCH-5530 HSCH-5531

Features

MONOLITHIC PAIR
Closely Matched Electrical Parameters

LOW CAPACITANCE 0.10 pF Max. at 0 Volts

LOW NOISE FIGURE 7.0 dB at 16 GHz

RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull

PLATINUM TRI-METAL SYSTEM High Temperature

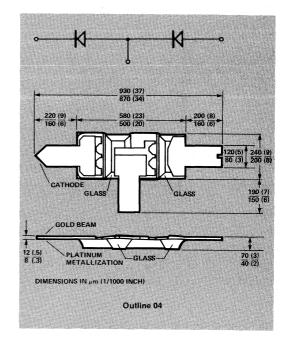
POLYIMIDE SCRATCH PROTECTION

NITRIDE PASSIVATION

Stable, Reliable Performance

Description

These dual beam lead diodes are constructed using a metalsemiconductor Schottky barrier junction. Advanced epitaxial techniques and precise process control insure uniformity and repeatability of this planar passivated microwave semiconductor. A nitride passivation layer provides immunity from contaminants which could otherwise lead to la drift.


The HP beam lead process allows for large beam anchor pads for rugged construction (typical 6 gram pull strength) without degrading capacitance.

Maximum Ratings (for Each Diode)

imately 1 x 10^7 hours.

Pulse Power Incident at $T_A = 25^{\circ} C$
TOPR — Operating Temperature Range65°C to +175°C
TSTG = Storage Temperature Range
Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approx-

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Applications

The beam lead diode is ideally suited for use in stripline or microstrip or coplanar waveguide circuits. Its small physical size and uniform dimensions give it low parasitics and repeatable RF characteristics through K-band.

The basic medium barrier device in this family is the DC tested HSCH-5511. The equivalent low barrier device is the HSCH-5531.

For applications requiring guaranteed RF performance, the HSCH-5510 is selected for 7.0 dB maximum noise figure at 16 GHz. For low-barrier RF performance, the HSCH-5530 is selected for 7.0 dB maximum noise figure at 16 GHz.

These dual beam leads are intended for use in balanced mixers and in even harmonic anti-parallel pair mixers. By using several of these devices in the proper configuration it is easy to assemble bridge quads, star quads, and ring quads for Class I, II, or III type double balanced mixers.

Bonding and Handling Procedures

See page 140.

Electrical Specifications for RF tested Diodes at TA =25°C

Part Number HSCH-	Barrier	Maximum Noise Figure NF (dB)	Imper Z _{IF} Min.		Maximum SWR	Minimum Breakdown Voltage V _{BR} (V)	Maximum Dynamic Resistance R _D (Ω)	Max. ΔR _D	Maximum Total Capacitance C _T (pF)	Max. ΔC _T (pF)	Maximum Forward Voltage V _F (mV)	Max.
5510	Médium		200		1.5:1	4V		3	0.10	0.02	500	10
5530	Low	7.0 @ 16 GHz		00 400			20				375	
Test Conditi	ons	DC Load L.O. Pow Ip = 30 N	/er = 1 r	nW	on	I _R ≤ 10 μA	I _F = 5 m	ıA	Vn = 0\ f = 1 M⊢		I _F = 1	mA

Electrical Specifications for DC tested Diodes at TA =25°C

Part Number HSCH-	Barrier	Minimum Breakdown Voltage V _{BR} (V)	Maximum Dynamic Resistance R _D (Ω)	Max. ² R _D (Ω)	Maximum Total Capacitance C _T (pF)	Max, ΔC _T (pF)	Maximum Forward Voltage V _F (mV)	Max. ΔV _F (mV)	
5511	Medium	4V	20	3	0.10	0.02	500	10	
5531	Low	44	20	١	0.10	0.02	375	10	
Test Conditions		I _R ≤ 10 μA	IF =	5 mA	V _R = (f = 1 M		I _F =	1 mA	

Typical Detector Characteristics at T_A =25°C

MEDIUM BARRIER AND LOW BARRIER (DC BIAS)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-55	dBm	20μA Bias
Voltage Sensitivity	γ	9.0	mV/μW	Video Bandwidth = 2 MHz
Video Resistance	Rv	1350	Ω	f = 10 GHz

LOW BARRIER (ZERO BIAS)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-46	dBm	Zero Bias
Voltage Sensitivity	γ	17	mV/μW	Video Bandwidth = 2 MHz
Video Resistance	Rv	1.4	MΩ	f = 10 GHz

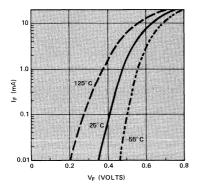


Figure 1. Typical Forward Characteristics, for Medium Barrier Beam Lead Diodes. HSCH-5510 Series.

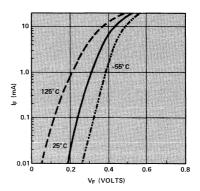


Figure 2. Typical Forward Characteristics, for Low Barrier Beam Lead Diodes. HSCH-5530 Series.

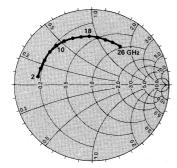


Figure 3. Typical Admittance Characteristics, with 1 mA Self Bias. HSCH-5510, -5530 Series.

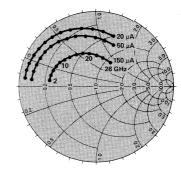


Figure 4. Typical Admittance Characteristics, with External Bias. HSCH-5510, -5530 Series.

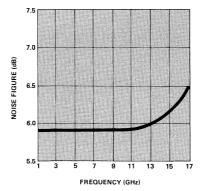
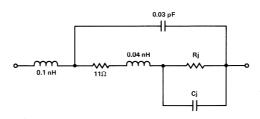



Figure 5. Typical Noise Figure vs. Frequency.

MODEL FOR EACH BEAM LEAD SCHOTTKY DIODE

SELF BIAS

	1.0 mA Self Bias
Part Numbers	R _i C _i
HSCH-5510, -5530	267 0.11

EXTERNAL BIAS

	20 μΑ	DC Bias	50 μA I	DC Blas	150 μA	DC Blas
Part Numbers	R _j (Ω)	C _j (pF)	R _j (Ω)	C _j (pF)	$\mathbf{R}_{\mathbf{j}}\left(\Omega\right)$	C _j (pF)
HSCH-5510, -5530	1400	0.09	560	0.09	187	0,10

BEAM LEAD SCHOTTKY DIODE QUADS FOR DOUBLE BALANCED MIXERS (1-18 GHz)

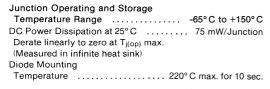
5082-9394-9399 5082-9696-9697

Features

PLANAR SURFACE
Easier Bonding, Stronger Leads

NITRIDE PASSIVATED
Stable, Reliable Performance

HIGH UNIFORMITY
Tightly Controlled Process Insures Uniform
RF Characteristics

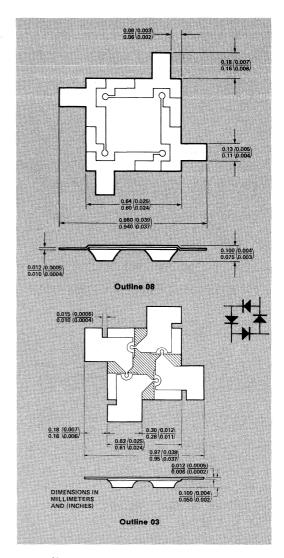

Description

These beam lead diodes are constructed using a metalsemiconductor Schottky barrier junction. Advanced epitaxial techniques and precise process control insure uniformity and repeatability of this planar passivated microwave semiconductor.

During manufacturing, gold leads are deposited onto a glass passivation layer before the wafer is separated. This provides exceptional lead strength.

These monolithic arrays of Schottky diodes are interconnected in ring configuration. The relative proximity of the diode junctions on the wafer assures uniform electrical characteristics among the four diodes which constitute a matched quad. They are designed for microstrip or stripline use. The leads provide a good continuity of transmission line impedance to the diode.

Maximum Ratings



Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10^7 hours.

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Applications

These diodes are designed for use in double balanced mixers, phase detectors, AM modulators, and pulse modulators requiring wideband operation and small size.

Bonding and Handling Procedures

See page 140.

Selection Guide

Package Frequency Outline	Barrier	To 2 GHz	2-4 GHz	4-8 GHz	8-12 GHz	12-18 GHz
Beam Lead	Medium	5082-9696	5082-9696	5082-9394	5082-9396	5082-9398
	Low	5082-9697	5082-9697	5082-9395	5082-9397	5082-9399

Electrical Characteristics at $T_A = 25^{\circ}C$

Typical Parameters

Part Number 5082-	344		Maximum Capacitance C _T (pF)		Maximum Capacitance Difference	Maximum V _F Difference	Maximum Dynamic Resistance	Forward Voltage
	Outline	Barrier	Diagonal	Adjacent	2C _T (pF)	ΔV _F (mV)	$A_D\left(\Omega\right)$	V _F (V)
9697	08		0.55	0.74	0.10		12	0.25
9395	- 08	Low	0.35	0.47	0.10	20	15	0.25
9397	03		0.20	0.27	0.05		16	0.30
9399	03		0.15	0.20	0.05		16	0.30
9696	08		0.55	0.74	0.10		12	0.35
9394	08	Medium	0.35	0.47	0.10		15	0.35
9396	03	Medium	0.20	0.27	0.05		16	0.45
9398	03		0.15	0.20	0.05		16	0.45
Test Conditions				$V_R = 0$ f = 1 MHz			5 mA djacent Leads	I _F = 1 mA Measured between Adjacent Leads

Dynamic and Series Resistance

Schottky diode resistance may be expressed as series resistance, R_D, or as dynamic resistance, R_D. These two terms are related by the equation

$$R_D = R_S + R_i$$

where $R_{\rm j}$ is the resistance of the junction. Junction resistance of a diode with DC bias is quite accurately calculated by

$$R_i = 26/I_B$$
 where

 $\ensuremath{\mathsf{I}}_B$ is the bias current in milliamperes. The series resistance is independent of current.

The dynamic resistance is more easily measured. If series resistance is specified it is usually obtained by subtracting the calculated junction resistance from the measured dynamic resistance.

Diagonal and Adjacent Capacitance

In a ring quad, diagonal capacitance is the capacitance tested between points A and B as shown in Figure 1. The diagonal capacitance measurement has the same value as the individual diode in the quad.

Example:

CDIAGONAL =
$$\frac{C_1 \times C_2}{C_1 + C_2} + \frac{C_3 \times C_4}{C_3 + C_4}$$

Assuming $C_1 = C_2 = C_3 = C_4 = 1.0 \text{ pF}$
CDIAGONAL = $1/2 + 1/2 = 1.0 \text{ pF}$

The capacitance value of the individual diode measured across points A and C in Figure 1 is the adjacent capacitance. The adjacent capacitance measurement of the individual diode contains some capacitive elements of the other diodes in the ring quad.

Example:

CADJACENT =
$$C_1 + \frac{1}{\frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4}}$$

Assuming $C_1 = C_2 = C_3 = C_4 = 1.0 \text{ pF}$ $C_{ADJACENT} = 1 + 1/3 = 1.333 \text{ pF}$

Therefore, the adjacent capacitance value of the individual diode in the Schottky ring quad is 33% higher than the actual (diagonal) capacitance value, i.e. $C_{ADJACENT} \cong 1.333 \times C_{DIAGONAL}$.

Hewlett-Packard guarantees maximum adjacent capacitance through 100% testing to the limits shown on the data sheet. Maximum diagonal capacitance values have been calculated.

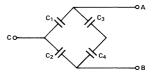


Figure 1.

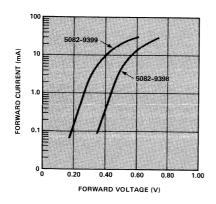


Figure 2. Typical Forward Characteristics at $T_{\Lambda}=25^{\circ}\,\text{C}$

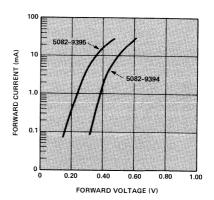


Figure 3. Typical Forward Characteristics at $T_A - 25^{\circ}\,\text{C}$

BONDING AND HANDLING PROCEDURES FOR BEAM LEAD DIODES

1. Storage

Under normal circumstances, storage of beam lead diodes in HP supplied waffle/gel packs is sufficient. In particularly dusty or chemically hazardous environments, storage in an inert atmosphere desicator is advised.

2. Handling

In order to avoid damage to beam lead devices, particular care must be exercised during inspection, testing, and assembly. Although the beam lead diode is designed to have exceptional lead strength, its small size and delicate nature requires that special handling techniques be observed so that the devices will not be mechanically or electrically damaged. A vacuum pickup is recommended for picking up beam lead devices, particularly larger ones, e.g., quads. Care must be exercised to assure that the vacuum opening of the needle is sufficiently small to avoid passage of the device through the opening. A #27 tip is recommended for picking up single beam lead devices. A 20X magnification is needed for precise positioning of the tip on the device. Where a vacuum pickup is not used, a sharpened wooden Q-tip dipped in isopropyl alcohol is very commonly used to handle beam lead devices.

3. Cleaning

For organic contamination use a warm rinse of trichorethane followed by a cold rinse in acetone and methanol. Dry under unfrared heat lamp for 5-10 mintues on clean filter paper. Freon degreaser may replace trichloroethane for light organic contamination.

- Ultrasonic cleaning is not recommended
- · Acid solvents should not be used

4. Bonding

See Application Note 992, "Beam Lead Attachment Methods", for a general description of the various methods for attaching beam lead diodes to both hard and soft substrates.

Thermocompression: See Application Note 979 "The Handling and Bonding of Beam Lead Devices Made Easy". This method is good for hard substrates only.

Wobble: This method picks up the device, places it on the substrate and forms a thermocompression bond all in one operation. This is described in MIL-STD-883B Method 2017 and is intended for hard substrates only. Equipment specifically designed for beam lead wobble bonding is available from KULICKE and SOFFA in Hursham PA.

Ultrasonic: Not recommended.

Resistance Welding or Parallel-GAP Welding: To make welding quads easier, attach one electrode of the welder to the substrate and use the second electrode for welding in lieu of the parallel gap electrode. To make welding on soft substrates easier, a low pressure welding head is recommended. Suitable equipment is available from HUGHES, Industrial Products Division in Carlsbad, CA.

For more information, see Application Note 993, "Beam Lead Diode Bonding to Soft Substrates".

Epoxy: With solvent free, low resistivity epoxies (available from ABLESTIK in Gardenia, CA, MICON in Lexington, MA., and many others) and improvements in dispensing equipment, the quality of epoxy bonds is sufficient for many applications. Equipment is available from ADVANCED SEMICONDUCTOR MATERIALS AMERICA, INC. Assembly Products Group in Chandler AZ (Automatic), and West Bond in Orange, CA (Manual).

Reflow: By preparing the substrate with tin or solder plating, reflow soldering can be suitably preformed using a modified wire bonder. The probe is used as a soldering tip. WEST BOND or UNITEK bonders make suitable bonds.

SCHOTTKY BARRIER DIODES FOR GENERAL PURPOSE APPLICATIONS

1N5711* 1N5712* 5082-2301 5082-2302 5082-2303 5082-2305 5082-2800/10/11/35* 5082-2900* HSCH-1001 [1N6263]*

Features

LOW TURN-ON VOLTAGE: AS LOW AS 0.34V AT 1mA
PICO-SECOND SWITCHING SPEED

HIGH BREAKDOWN VOLTAGE: UP TO 70V
MATCHED CHARACTERISTICS AVAILABLE

Description/Applications

The 1N5711, 1N5712, 5082-2800/10/11 are passivated Schottky barrier diodes which use a patented "guard ring" design to achieve a high breakdown voltage. Packaged in a low cost glass package, they are well suited for high level detecting, mixing, switching, gating, log or A-D converting, video detecting, frequency discriminating, sampling and wave shaping.

The 5082-2835 is a passivated Schottky diode in a low cost glass package. It is optimized for low turn-on voltage. The 5082-2835 is particularly well suited for the UHF mixing needs of the CATV marketplace.


The 5082-2300 and 2900 Series devices are unpassivated Schottky diodes in a glass package. These diodes have extremely low 1/f noise and are ideal for low noise mixing, and high sensitivity detecting. They are particularly well suited for use in Doppler or narrow band video receivers.

The HSCH-1001 is a Hybrid Schottky diode sealed in a rugged double stud Outline 12 glass package suitable for automatic insertion. The low turn-on voltage, fast switching speed, and low cost of these diodes make them ideal for general purpose switching.

Application Bulletins 13, 14, 15, and 16 describe applications in which these diodes are used for speed up of a transistor, clipping, clamping, and sampling, respectively. Other digital and RF applications are described in Application Bulletins 26, 27, 28, 30, 31 and 36.

Maximum Ratings

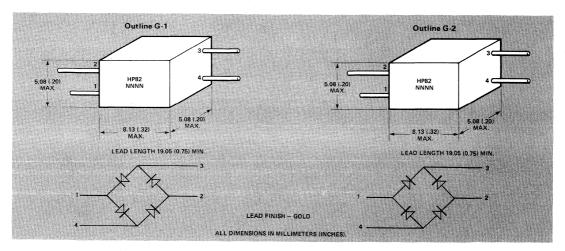
Junction Operating and Storage Temperature Range
5082-2305, 2301, 2302, 2303, 290060°C to +100°C
1N5711, 1N5712, 5082-2800/10/11,
HSCH-100165°C to +200°C
5082-283560°C to +150°C
Operation of these devices within the above tempera- ture ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10 ⁷ hours.
DC Power Dissipation (Measured in an infinite heat sink at
$T_{CASE} = 25^{\circ}C$
Derate linearly to zero at maximum rated temperature
5082-2305, 2301, 2302, 2303, 2900 100 mW
1N5711, 1N5712, 5082-2800/10/11 250 mW
5082-2835 150 mW
HSCH-1001 400 mW
Peak Inverse Voltage VBR

Package Characteristics

	Outline 15	Outline 12
Lead Material:	Dumet	Dumet
Lead Finish:	1N5711, 1N5712: Tin	Tin
	2800 Series: Tin	
	2300, 2900 Series: Gold	
Maximum Soldering		260° C
Temperature:	230° C for 5 sec.	for 10 sec.
Minimum Lead		
Strength:	4 lb. Pull	10 lb. Pull
Typical Package		
Inductance:	1N5711, 1N5712: 2.0 nH	1.8 nH
	2800 Series: 2.0 nH	
	2300, 2900	
	Series: 3.0 nH	
Typical Package		
Capacitance:	1N5711, 1N5712: 0.2 pF	0.25 pF
	2800 Series: 0.2 pF	
	2300, 2900	
	Series: 0.07 pF	
	The leads on the Out-	
	line 15 package should	
	be restricted so that the	
	bend starts at least 1/16 inc	:h
	from the glass body.	
* Alexandrials to Tanan	10.10	

*Also available in Tape and Reel. Please contact local HP Sales Office for further information.

Electrical Specifications at T_A=25°C


Part Number Package		Minimum Breakdown Voltage	Maximum Forward Voltage	V _F =1V Max at Forward Current	Max Reverse Cu	Maximum Capacitance		
5082-	Outline	V _{BR} (V)	V _F (mV)	I _F (mA)	I _R (nA)	at V _R (V)	C _T (pF)	
2800	15	70	410	15	200	50	2.0	
1N5711	15	70	410	15	200	50	2.0	
2305	15	30	400	75	300	15	1.0	
2301	15	30	400	50	300	15	1.0	
2302	15	30	400	35	300	15	1.0	
2303	15	20	400	35	500	15	1.0	
2810	15	20	410	35	100	15	1.2	
1N5712	15	20	550	35	150	16	1.2	
2811	15	15	410	20	100	8	1.2	
2900	15	10	400	20	100	5	1.2	
2835	15	8*	340	10 [†]	100	1	1.0	
HSCH-1001 (1N6263)	12	60	410	15	200	50	2.2	
Test Conditions		$I_{R} = 10 \mu\text{A}$ $*I_{R} = 100 \mu\text{A}$	I _F = 1 mA	†V _F = .45V			V _R = 0 V f = 1.0 MHz	

Note:

Effective Carrier Lifetime (7) for all these diodes is 100 ps maximum measured with Krakauer method at 20 mA except for HSCH-1001 (1N6263), 1N5711, and 1N5712 which are measured at 5 mA.

Matched Pairs and Quads

Basic Part Number 5082-	Matched Pair Unconnected	Matched Quad Unconnected	Matched Ring Quad Encapsulated G-1 Outline	Matched Bridge Quad Encapsulated G-2 Outline	Batch Matched	Test Conditions
2301	5082-2306 $\Delta V_F = 20 \text{ mV}$ $\Delta Co = 0.2 \text{ pF}$		120 - 120 Control			ΔV_F at I_F = 0.75, 20 mA ΔCo at f = 1.0 MHz
2303	5082-2308 ΔV _F = 20 mV ΔCo = 0.2 pF	5082-2370 $\Delta V_F = 20 \text{ mV}$ $\Delta Co = 0.2 \text{ pF}$	5082-2396 ΔV _F = 20 mV ΔCo = 0.2 pF	5082-2356 ΔV _F = 20 mV ΔCo = 0.2 pF		ΔV_F at I_F = 0.75, 20 mA ΔCo at f = 1.0 MHz
2900	5082-2912 ΔV _F = 30 mV	5082-2970 ΔV _F = 30 mV		5082-2997 ΔV _F = 30 mV	10.772.5	ΔV_F at I_F = 1.0, 10 mA
2800	5082-2804 ΔV _F = 20 mV	$5082-2805$ $\Delta V_F = 20 \text{ mV}$			5082-2836* $\Delta V_F = 20 \text{ mV}$ $\Delta C_0 = 0.1 \text{ pF}$	ΔV_F at $I_F = 0.5, 5$ mA * $I_F = 10$ mA ΔC_O at $f = 1.0$ MHz
2811		5082-2815 $\Delta V_F = 20 \text{ mV}$ $\Delta C_O = 0.20 \text{ pF}$	5082-2814 $\Delta V_F = 20 \text{ mV}$ $\Delta C_O = 0.20 \text{ pF}$	5082-2813 $\Delta V_F = 20 \text{ mV}$ $\Delta C_O = 0.20 \text{ pF}$	5082-2826 $\Delta V_F = 10 \text{ mV}$ $\Delta C_O = 0.1 \text{ pF}$	ΔV_F at $I_F = 10$ mA ΔC_O at $f = 1.0$ MHz
2835					5082-2080 $\Delta V_F = 10 \text{ mV}$ $\Delta C_O = 0.1 \text{ pF}$	ΔV_F at I_F = 10 mA ΔC_O at f = 1.0 MHz

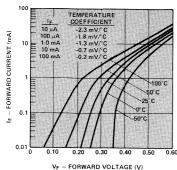


Figure 1. I-V Curve Showing Typical Temperature Variation for 5082-2300 and 5082-2900 Series Schottky Diodes.

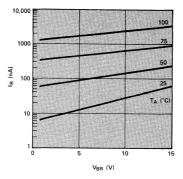


Figure 2. 5082-2300 Series Typical Reverse Current vs. Reverse Voltage at Various Temperatures.

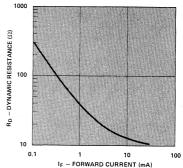


Figure 3. 5082-2300 Series and 5082-2900 Series Typical Dynamic Resistance (R_D) vs. Forward Current (I_F).

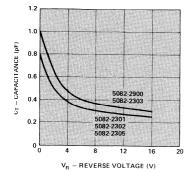


Figure 4. 5082-2300 and 5082-2900 Series Typical Capacitance vs. Reverse Voltage.

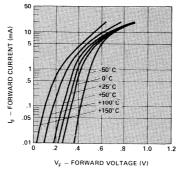


Figure 5. I-V Curve Showing Typical Temperature Variation for 5082-2800 or 1N5711 Schottky Diodes.

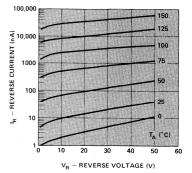


Figure 6. (5082-2800 or 1N5711)Typical Variation of Reverse Current (I_R) vs. Reverse Voltage (V_R) at Various Temperatures.

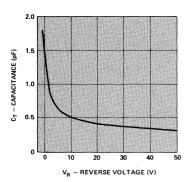


Figure 7. (5082-2800 or 1N5711) Typical Capacitance (C_T) vs. Reverse Voltage (V_R).

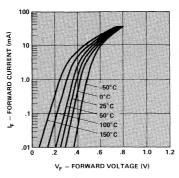


Figure 8. I-V Curve Showing Typical Temperature Variation for the 5082-2810 or 1N5712 Schottky Diode.

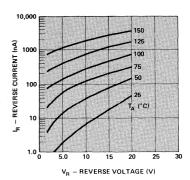


Figure 9. (5082-2810 or 1N5712) Typical Variation of Reverse Current (I_R) vs. Reverse Voltage (V_R) at Various Temperatures.

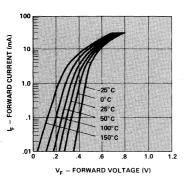


Figure 10. I-V Curve Showing Typical Temperature Variation for the 5082-2811 Schottky Diode.

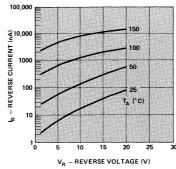


Figure 11. (5082-2811) Typical Variation of Reverse Current (I_R) vs. Reverse Voltage (V_R) at Various Temperatures.

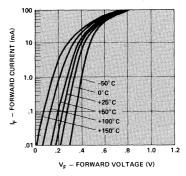


Figure 12. I-V Curve Showing Typical Temperature Variations for 5082-2835 Schottky Diode.

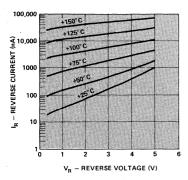


Figure 13. (5082-2835) Typical Variation of Reverse Current (I_R) vs. Reverse Voltage (V_R) at Various Temperatures.

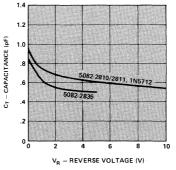


Figure 14. Typical Capacitance (C_T) vs. Reverse Voltage (V_R) .

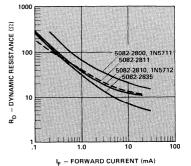


Figure 15. Typical Dynamic Resistance (R_D) vs. Forward Current (I_F).

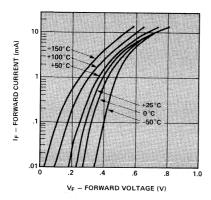


Figure 16. Typical Variation of Forward Current (IF) vs. Forward Voltage (VF) at Various Temperatures for the HSCH-1001.

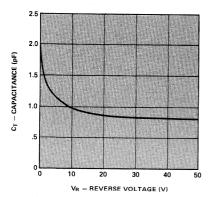


Figure 18. Typical Capacitance $(\ensuremath{C_T})$ vs. Reverse Voltage $(\ensuremath{V_R})$ for the HSCH-1001.

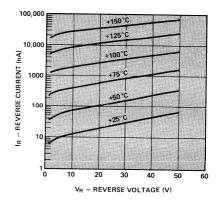


Figure 17. Typical Variation of Reverse Current (IR) vs. Reverse Voltage (VR) at Various Temperatures for the HSCH-1001.

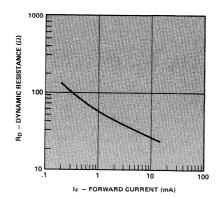


Figure 19. Typical Dynamic Resistance (R_D) vs. Forward Current (IF) at $T_A=25^{\circ}\,C$ for the HSCH-1001.

SCHOTTKY BARRIER DIODES FOR STRIPLINE, MICROSTRIP MIXERS AND DETECTORS

5082-2200/01/02/03 5082-2207/08/09/10 5082-2765/66 5082-2774/75 5082-2785/86 5082-2794/95

Features

SMALL SIZE

LOW NOISE FIGURE 6 dB Typical at 9 GHz

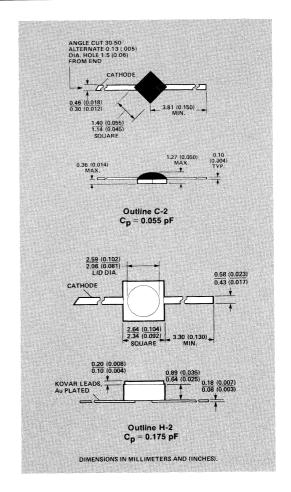
RUGGED DESIGN

HIGH UNIFORMITY

HIGH BURNOUT RATING

1 W RF Pulse Power Incident

BOTH MEDIUM AND LOW BARRIER AVAILABLE


Description/Applications

This family consists of medium barrier and low barrier beam lead diodes mounted in easily handled carrier packages. Low barrier diodes provide optimum noise figure at low local oscillator drive levels. Medium barrier diodes provide a wider dynamic range for lower distortion mixer designs. Application Note 976 presents impedance matching techniques for an X-Band mixer.

Maximum Ratings

static discharge through the diode.

Operating and Storage Temperature Range C-2 Packaged Diodes
Operation of these devices within the above tempera- ture ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10 ⁷ hours.
Pulse Power Incident at TCASE = 25° C 1 W (1 μ s pulse, Du = 0.001)
CW Power Dissipation at TCASE = 25° C
(Mounted in infinite Heat Sink) 125 mW
(Derate linearly to Zero at Maximum Operating Temperature)
Diode Mounting Temperature in Packages
C-2 235° C for 10 sec max.
H-2 260°C for 10 sec max.
Peak Inverse Voltage 4 V
These diodes are ESD sensitive. Handle with care to avoid

Package Characteristics

These diodes are designed for microstrip and stripline use. The kovar leads provide good continuity of transmission line impedance to the diode. Outline C2 is a plastic on ceramic package. Outline H2 has a metal ceramic hermetic seal. The ceramic is alumina. Metal parts are gold plated kovar.

The hermetic package, outline H2, is capable of passing many of the environmental tests of MIL-STD-750. The applicable solderability test is reference 2031.1: 260° C, 10 seconds.

RF Electrical Specifications at $T_A = 25^{\circ}C$

Part Number 5082-	Batch Matched 5082-	Test Freq. (GHz)	Barrier	Maximum Noise Figure NF (dB)	Impe	F dance (Ω) Max.	Maximum SWR	Package	Typical Capacitance C _T (pF)
2200	2201		Medium	6.0			1.5:1		400
2202	2203		Medium	6.5	200	400	2.0:1	Hermetic	
2765	2766		Low	6.0			1.5:1	H-2	0.3
2785	2786	0.075	Low	6.5			2.0:1		
2207	2208	9.375	Medium	6.0			1.5:1		1947 (1947)
2209	2210	-	Medium	6.5	200	400	2.0:1	Broadband	100
2774	2775		Low	6.0	200	400	1.5:1	C-2	
2794	2795		Low	6.5			2.0:1		0.22
Test Conditions	ΔNF≤0.3 dB ΔZ _{IF} ≤25Ω			DC Load Re L.O. Power IF = 30 MHz	= 1 mW		V = 0		

Typical Detector Characteristics at $T_A = 25$ °C

MEDIUM BARRIER AND LOW BARRIER (DC BIAS)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-54	dBm	20μA Bias
Voltage Sensitivity	γ	6.6	mV/μW	Video Bandwidth = 2 MHz
Video Resistance	Rv	1400	Ω	f = 10 GHz

LOW BARRIER (ZERO BIAS)

Parameter	Symbol	Typical Value	Units	Test Conditions
Tangential Sensitivity	TSS	-44	dBm	Zero Bias
Voltage Sensitivity	γ	10	mV/μW	Video Bandwidth = 2 MHz
Video Resistance	Ry	1.8	МΩ	f = 10 GHz

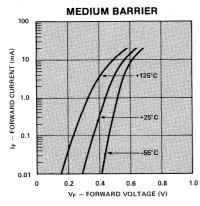


Figure 1. Typical Forward Characteristics

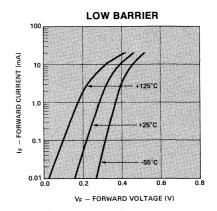


Figure 2. Typical Forward Characteristics

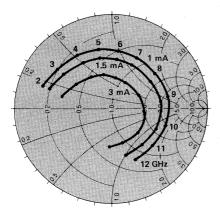


Figure 3. Typical Admittance Characteristics, 5082-2200 and 5082-2765 with self bias.

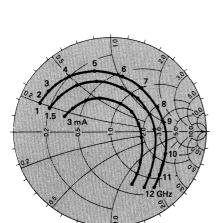


Figure 5. Typical Admittance Characteristics, 5082-2202 and 5082-2785 with self bias.

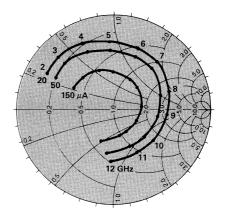


Figure 4. Typical Admittance Characteristics, 5082-2200 and 5082-2765 with external bias.

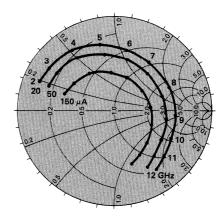


Figure 6. Typical Admittance Characteristics, 5082-2202 and 5082-2785 with external bias.

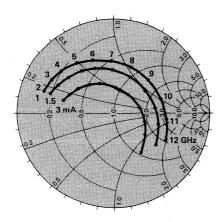


Figure 7. Typical Admittance Characteristics, 5082-2207 and 5082-2774 with self bias.

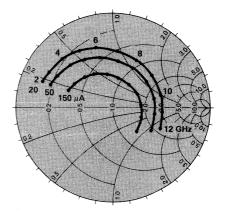


Figure 8. Typical Admittance Characteristics, 5082-2207 and 5082-2774 with external bias.

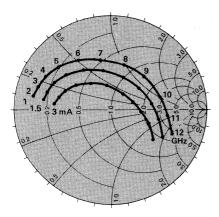


Figure 9. Typical Admittance Characteristics, 5082-2209 and 5082-2794 with self bias.

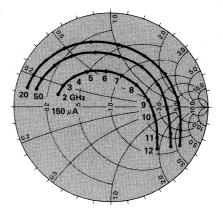
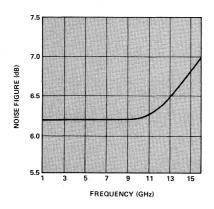



Figure 10. Typical Admittance Characteristics, 5082-2209 and 5082-2794 with external bias.

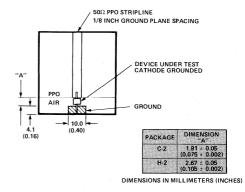
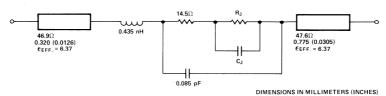
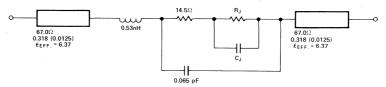



Figure 11. Typical Noise Figure vs. Frequency for 5082-2209, 2794.


Figure 12. Admittance Test Circuit.

MODEL FOR H2 DIODES

		1 mA Rect. Current	20 μA Ext. Bias	
Parameter	Symbol	5082-2200, 5082-2765	5082-2200, 5082-2765	Units
Junction Resistance	RJ	258	545	Ohms
Junction Capacitance	CJ	0.255	0.302	pF

MODEL FOR C-2 DIODES

DIMENSIONS IN MILLIMETERS (INCHES)

		1 mA Rect. Current	20 μA Ext. Bias		
Parameter	Symbol	5082-2207, 5082-2774	5082-2207, 5082-2774	Units	
Junction Resistance	RJ	338	421	Ohms	
Junction Capacitance	Cu	0.189	0.195	pF	

SCHOTTKY BARRIER DIODE QUADS FOR DOUBLE BALANCED MIXERS

5082-2231 5082-2233 5082-2263 5082-2271/72 5082-2277 5082-2279/80 5082-2291/92 5082-2294 5082-2830/31

Features

SMALL SIZE Eases Broad Band Designs

TIGHT MATCH Improves Mixer Balance

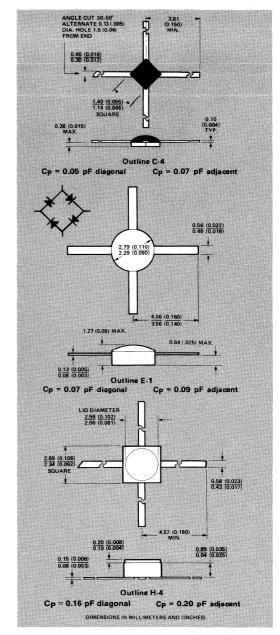
IMPROVED BALANCE OVER TEMPERATURE

RUGGED DESIGN

BOTH MEDIUM AND LOW BARRIER DIODES AVAILABLE

Description / Applications

These matched diode quads use a monolithic array of Schottky diodes interconnected in ring configuration. The relative proximity of the diode junction on the wafer assures uniform electrical characteristics and temperature tracking.


These diodes are designed for use in double balanced mixers, phase detectors, AM modulators, and pulse modulators requiring wideband operation and small size. The low barrier diodes allow for optimum mixer noise figure at lower than conventional local oscillator levels. The wider dynamic range of the medium barrier diodes allows for better distortion performance.

Maximum Ratings

Soldering Temperature H-4 260° C for 10 sec. C-4 235° C for 10 sec.

E-1 220° C for 10 sec.

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Selection Guide

Frequency Package Outline	Barrier	To 2 GHz	2-4 GHz	4-8 GHz	8-12 GHz	12-18 GHz
E-1 Low Cost	Medium Low	5082-2830 5082-2831	5082-2277	5082-2277		
H-4	Medium	5082-2263	5082-2263	5082-2263		
Hermetic	Low	5082-2231	5082-2231	5082-2233	1000	
C-4 Broadband	Medium Low	5082-2291 5082-2271	5082-2291 5082-2271	5082-2292 5082-2272	5082-2294 5082-2279	5082-2294 5082-2280

Electrical Characteristics at T_A=25°C

Typical Parameters

Part Number	Package	Barrier	Maximum Capacitance C _T (pF)		Maximum Capacitance Difference	Maximum V _F Difference	Maximum Dynamic Resistance	Forward Voltage
5082-			Diagonal	Adjacent	4C _T (pF)	۵۷ _F (mV)	$\mathbf{R}_{D}\left(\Omega\right)$	V _F (V)
2231		Low	0.60	0.80	0.10		12	0.25
2233	H-4		0.40	0.54	0.05		16	0.30
2263		Medium	0.40	0.54	0.05		16	0.45
2830		Medium	0.5 Typ.	0.67 Typ.	0.20		12	0.40
2831	E-1	Low	0.5 Typ.	0.67 Typ.	0.20		12	0.25
2277		Medium	0.50	0.67	0.10		15	0.35
2271			0.60	0.80	0.10	20	12	0.25
2272		1	0.40	0.54	0.10		15	0.25
2279		4 Medium	0.25	0.34	0.05		16	0.30
2280	٠.		0.20	0.27	0.05		16	0.30
2291	C-4		0.60	0.80	0.10		12	0.35
2292			0.40	0.54	0.10		15	0.35
2294			0.20	0.27	0.05		16	0.45
Test Conditions			V _R = 0 f = 1 MHz			I _F = 5 mA between Adjacent Leads		I _F = 1 mA Measured between Adjacent Leads

Package Characteristics

The HP outline E1 package is designed for MIC, Microstrip, and Stripline use from dc through X-Band. The leads provide a good continuity of transmission line impedance to the monolithic diode array. The leads are tin plated copper.

The C-4 subminiature package is a ceramic carrier whose gold plated kovar leads are brazed to the substrate for maximum package ruggedness. If the leads are to be formed, they should be restricted so the bend starts at least 0.25 mm (0.01 inch) from the package body. The semiconductor is protected from mechanical abrasion by epoxy. The H-4 miniature package is a hermetic metal-ceramic device, which makes it ideal for applications requiring high reliability. The leads are gold plated kovar. Outline H-4 is capable of passing many of the environmental tests of MIL-STD-750. The applicable solderability test is reference 2031.1: 260° C, 10 seconds.

Dynamic and Series Resistance

$$R_D = R_S + R_i$$

where R_j is the resistance of the junction. Junction resistance of a diode with DC bias is quite accurately calculated by

$$R_i = 26/I_B$$
 where

 $\ensuremath{\mathsf{Ig}}$ is the bias current in milliamperes. The series resistance is independent of current.

The dynamic resistance is more easily measured. If series resistance is specified it is usually obtained by subtracting the calculated junction resistance from the measured dynamic resistance.

Diagonal and Adjacent Capacitance

In a ring quad, DIAGONAL CAPACITANCE is the capacitance tested between points A and B as shown in Figure 1. The diagonal capacitance measurement has the same value as the individual diode in the quad.

$$\begin{aligned} &\text{Example:}\\ &C_{DIAGONAL} = \frac{C_1 \times C_2}{C_1 + C_2} + \frac{C_3 \times C_4}{C_3 + C_4} \end{aligned}$$

Assuming
$$C_1 = C_2 = C_3 = C_4 = 1.0 \text{ pF}$$

 $C_{DIAGONAL} = 1/2 + 1/2 = 1.0 \text{ pF}$

The capacitance value of the individual diode measured across points A and C in Figure 1 is the ADJACENT CAP-ACITANCE. The adjacent capacitance measurement of the individual diode contains some capacitive elements of the other diodes in the ring quad.

Example:

$$C_{ADJACENT} = C_1 + \frac{1}{\frac{1}{C_2} + \frac{1}{C_3} + \frac{1}{C_4}}$$

Assuming $C_1 = C_2 = C_3 = C_4 = 1.0 \text{ pF}$ $C_{ADJACENT} = 1 + 1/3 = 1.333 \text{ pF}$ Therefore, the adjacent capacitance value of the individual diode in the Schottky ring quad is 33% higher than the actual (diagonal) capacitance value. I.E. Cadjacent \cong 1.333 x CDIAGONAL.

Hewlett-Packard guarantees maximum capacitance through 100% testing to the limits shown on the data sheet. Maximum adjacent capacitance values have been calculated.

$$c \sim c_1 \sim c_3 \sim c_4 \sim$$

Figure 1.

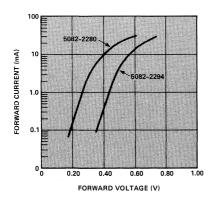


Figure 2. Typical Forward Characteristics at $T_A = 25^{\circ}$ C

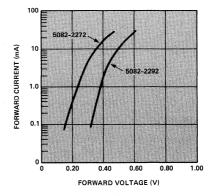


Figure 3. Typical Forward Characteristics at T_A = 25° C

SCHOTTKY BARRIER DIODES FOR MIXERS AND DETECTORS

5082-2273/74 5082-2295-98 5082-2350/51 5082-2400/01 5082-2520/21/65/66 5082-2701/02/06/07 5082-2711-14/23-24 5082-2817/18

Features

LOW NOISE FIGURE

HIGH BURNOUT RATING
15 W RF Pulse Power Incident

RUGGED DESIGN

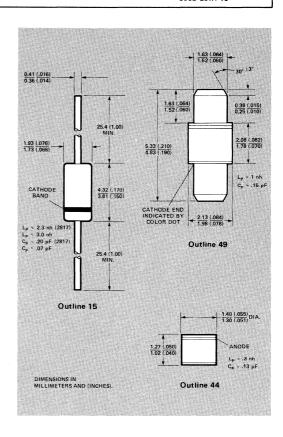
HIGH UNIFORMITY

BOTH MEDIUM AND LOW BARRIER DIODES AVAILABLE

Description / Applications

These Schottky diodes are optimized for use in broad band and narrow band microstrip, coaxial, or waveguide mixer assemblies operating to 18 GHz. The low barrier diodes give optimum noise figure performance at low local oscillator drive levels. Medium barrier diodes provide a wider dynamic range for lower distortion mixer designs. The 5082-2350, -2400, -2520 and -2565 have extremely low 1/f noise, making them ideal for use as Doppler mixers.

Maximum Ratings


Junction Operating and Storage Temperature Hange	
5082-2400, -2401, -2565, -2566, -2350, -2351, -2520,	
252160° C to +100°	С
5082-2817, -281860°C to +200°	C
All other diodes60° C to +150°	C

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷ hours.

CW Power Dissipation (Measured in an infinite heat sink)
Derate linearly to 0 W at max. rated temperature at
TCASE = 25° C

5082-2300, -2400, -2500 Series	100	m۱۸
5082-2817, -2818	250	mw
Others	200	mW
Pulse Power Dissipation		
Peak power absorbed by the diode at $T_{CASE} = 25$	°C	

Note: The 5082-2200, -2500 and -2700 series are ESD sensitive. Handle with care to avoid static discharge through the diode.

Package Characteristics

The HP Outline 15 package has a glass hermetic seal with plated Dumet leads which should be restricted so that the bend starts at least 1/16" (1.6 mm) from the glass body. With this restriction, it will meet MIL-STD-750. Method 2036, Conditions A and E (4 lb. | 1.8 kg| tension for 30 minutes). The maximum soldering temperature is 230°C for 5 seconds. Marking is by digital coding with a cathode band.

The HP Outline 49 package has a metal-ceramic hermetic seal. The anode and cathode studs are gold-plated Kovar. The maximum soldering temperature is 230°C for 5 seconds. Stud-stud T/R is 0.010" max.

The HP Outline 44 package is a hermetically sealed ceramic package. The anode and cathode are gold-plated Kovar. The maximum soldering temperature is 230° C for 5 seconds.

Electrical Specifications at T_A=25°C

Part Number 5082-	Matched Pair 5082-	Barrier	LO Test Frequency (GHz)	Maximum SSB Noise Figure NF (dB)	IF Imp ZIF Min.		Maximum SWR	Package Outline	
2817	2818	Medium	2.0	6.0	250	400	_1,5:1		
2400	2401	Medium	2.0	6.0	150	250	1.3:1		
2350	2351	Medium	2.0	7.0	150	250	1,5:1	15	
2565	2566	Medium	3.0	6.0	100	250	1.5:1		
2520	2521	Medium	3.0	7.0	100	250	1.5:1		
2713	2714	Medium	9.375	6.0	200	400	1.5:1		
2711	2712	Medium	9.375	6.5	200	400	2.0:1	49	
2701	2706	Medium	9.375	6.0	200	400	1.5:1		
2702	2707	Medium	9.375	6.5	200	400	1.5:1		
2295	2296	Low	9.375	6.0	100	250	1.5:1	44	
2297	2298	Low	9.375	6.5	100	250	2.0:1		
2723	2724	Medium	16	6.5	200	400	1.5:1	49	
2273	2274	Medium	16	6.5	200	400	1.5:1	44	
Test Condi- tions	ΔNF≤0.3dB ΔZ _{1F} ≤25Ω		LO Power = 1 mW IF=30 MHz, 1.5 dB NF Zero DC Load Resistance (100Ω for 5082-2817)		Same a except IF = 10		Same as for NF		

Typical Parameters

Junction Capacitance C _{JO} (pF)	Breakdown Voltage V _{BR} (V)
1.0	15
0.7	30
0.9	30
0.7	5
0.7	5
0.10	3
marks and a	3
V = 0	Ι _R = 10 μΑ

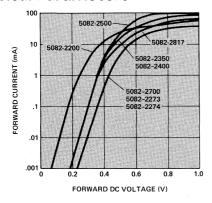


Figure 1. Typical Forward Characteristics at $T_A = 25^{\circ}\,\text{C}$.

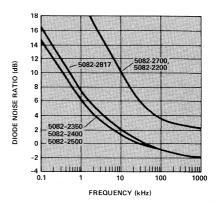


Figure 2. Typical Diode Noise Ratio vs. Frequency at 1 mA Current.

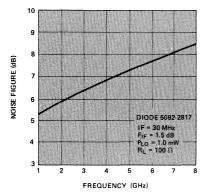


Figure 3. Typical Noise Figure vs. Frequency. The mount is tuned for minimum noise figure at each frequency.

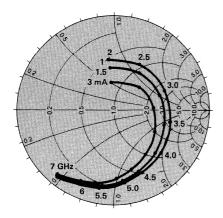


Figure 5. Typical Admittance Characteristics, 5082-2817 with Self Bias.

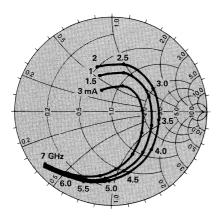


Figure 7. Typical Admittance Characteristics, 5082-2400 with Self Bias.

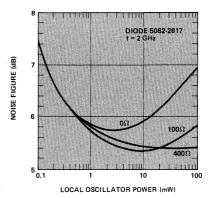


Figure 4. Single Sideband Noise Figure (including an IF-amplifier noise figure of 1.5 dB) vs. Incident LO Power for Various dc-load Resistances R_L. The mount is tuned for minimum noise figure at each LO power level).

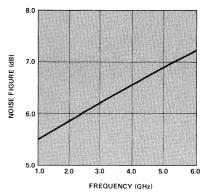


Figure 6. Typical HP 5082-2400 Noise Figure vs. Frequency with $P_{LO}=1.0$ mW, IF =30 MHz, and NFIF =1.5 dB. Mount Tuned at Each Frequency.

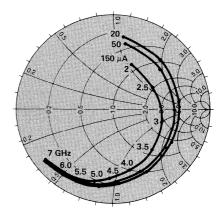


Figure 8. Typical Admittance Characteristics, 5082-2400 with External Bias.

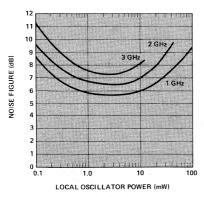


Figure 9. Typical HP 5082-2350 Noise Figure vs. Local Oscillator Power at 1.0, 2.0 and 3.0 GHz with IF = 30 MHz and NF $_{\rm IF}$ = 1.5 dB. (The Mount is tuned for Minimum Noise Figure at each LO Level).

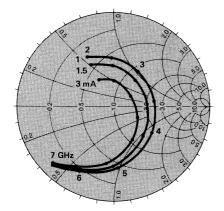


Figure 11. Typical Admittance Characteristics, 5082-2350 with Self Bias.

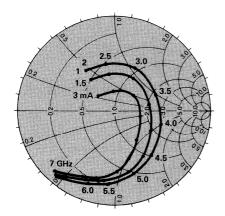


Figure 13. Typical Admittance Characteristics, 5082-2565 with Self Bias.

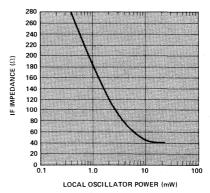


Figure 10. Typical HP 5082-2300 and 2400 Series IF Impedance vs. Local Oscillator Power with $f_{LO}=2.0$ GHz and IF = 30 MHz. (The Mount is tuned for Minimum Noise Figure at each LO Level).

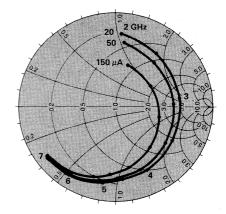


Figure 12. Typical Admittance Characteristics, 5082-2350 with External Bias.

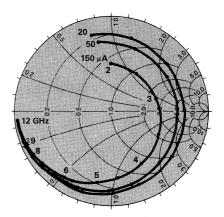


Figure 14. Typical Admittance Characteristics, 5082-2565 with External Bias.

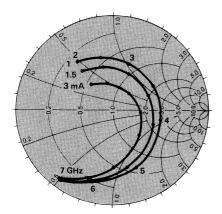


Figure 15. Typical Admittance Characteristics, 5082-2520 with Self Bias.

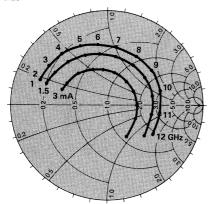


Figure 17. Typical Admittance Characteristics, 5082-2713 with Self Bias.

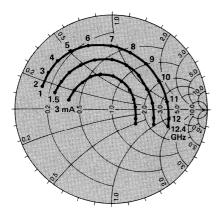


Figure 19. Typical Admittance Characteristics, 5082-2711 with Self Bias.

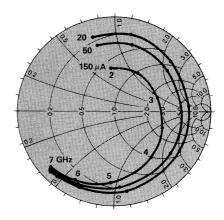


Figure 16. Typical Admittance Characteristics, 5082-2520 with External Bias.

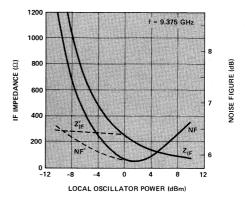


Figure 18. Typical Noise Figure and IF Impedance for 5082-2711 vs. Local Oscillator Power. Note the improved performance at low levels of LO power when dc bias is superimposed (dashed curves). (The Mount is tuned for Minimum Noise Figure at each LO Level).

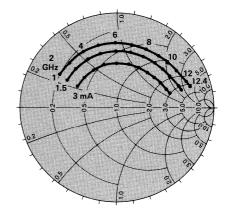


Figure 20. Typical Admittance Characteristics, 5082-2701 with Self Bias.

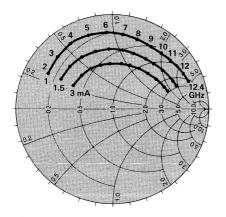


Figure 21. Typical Admittance Characteristics, 5082-2702 with Self Bias.

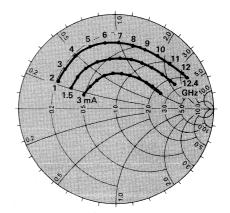


Figure 22. Typical Admittance Characteristics, 5082-2295 with Self Bias.

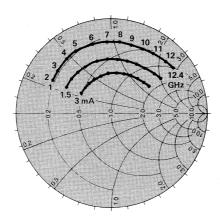


Figure 23. Typical Admittance Characteristics, 5082-2297 with Self Bias.

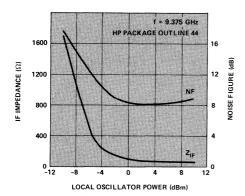


Figure 24. Typical Noise Figure and IF Impedance vs. Local Oscillator Power, 5082-2295 through -2298. Diode unmatched in 50 Ω line..

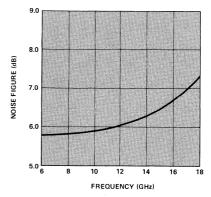


Figure 25. Typical Noise Figure vs. Frequency. IF = 30 MHz, NF $_{\rm IF}$ = 1.5 dB, $P_{\rm LO}$ = 1 mW. Diode tuned at each frequency (5082-2200, -2700 series).

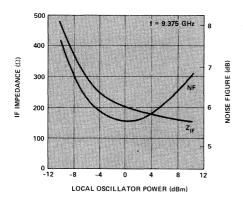


Figure 26. Typical Noise Figure and IF Impedance vs. Local Oscillator Power. Diode tuned at each local oscillator power level (5082-2295).

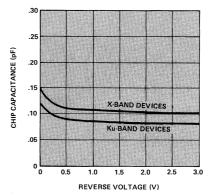


Figure 27. Typical Chip Capacitance vs. Reverse Voltage, -2700 Series.

ZERO BIAS SCHOTTKY DIODES FOR MIXERS AND DETECTORS

HSCH - 3206/07 HSCH - 3486

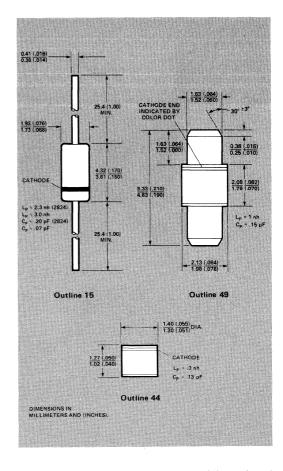
FEATURES HIGH VOLTAGE SENSITIVITY NO BIAS REQUIRED CHOICE OF HIGH OR LOW VIDEO IMPEDANCE

Description/Applications

The high zero bias voltage sensitivity of these Schottky Barrier diodes makes them ideally suitable for narrow bandwidth video detectors, ECM receivers, and measurement equipment. These diodes also make excellent mixers for use with low power LO.

Maximum Ratings

Operating and Storage


Temperature Range65°C to Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 107 hours.	/e ce
CW Power Dissipation at T _A = 25° C HSCH-3206, -3207	
Peak power incident. 1 µs pulse, Du = 0.001	1 W

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Package Characteristics

The HP Outline 15 package has a glass hermetic seal with gold plated Dumet leads which should be restricted so that the bend starts at least 1/16" (1.6 mm) from the glass body. With this restriction, it will meet MIL-STD-750, Method 2036,

Conditions A and E (4 lb. $[1.8\,\mathrm{kg}]$ tension for 30 minutes). The maximum soldering temperature is 230°C for 5 seconds. Marking is by digital coding with a cathode band.

The HP Outline 49 package has a metal-ceramic hermetic seal. The anode and cathode studs are gold-plated Kovar. The maximum soldering temperature is 230°C for 5 seconds. Stud-stud T/R is 0.010" max.

The HP Outline 44 package is a hermetically sealed ceramic package. The anode and cathode are gold-plated Kovar. The maximum soldering temperature is 230° C for 5 seconds.

Electrical Specifications at T_A=25°C

Part Number	Package Outline	Maximum Tangential Sensitivity TSS (dBm)	Minimum Voltage Sensitivity γ (mV/μW)	Video Resistance $\mathbf{R}_{\mathbf{V}}$ (K Ω) Min. Max.		Typical Total Capacitance C _T (pF)	
HSCH-3207	44	-42	8	80	300	0.30	
HSCH-3206	49	-42	10	100	300	0.30	
HSCH-3486	15	-54	7.5	2	- 8	0.30	
Test Conditions		Video Bandwidth = 2 MHz ftest = 10 GHz	Power in = -40 dBm f _{test} = 10 GHz		V _R = 0 V f = 1 MHz		

Note:

For HSCH-3207, -3206, I_R = 10 μ A (max) at V_R = 3 V at T_A = 25° C. For reverse characteristics of HSCH-3486 see Figure 3.

Typical Characteristics

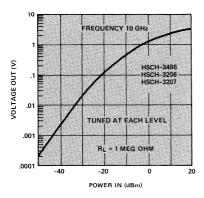


Figure 1. Typical Dynamic Transfer Characteristics.

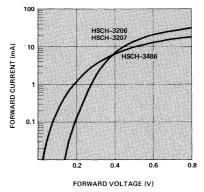


Figure 2. Typical Forward Characteristics at $T_A=25^{\circ}\,C.$

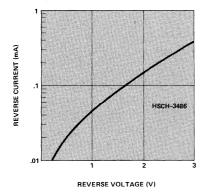


Figure 3. Typical Reverse Characteristics at $T_A = 25^{\circ}$ C.

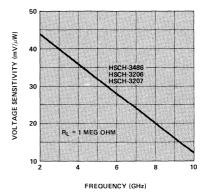


Figure 4. Typical Voltage Sensitivity vs. Frequency.

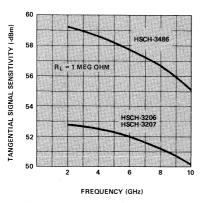


Figure 5. Typical Tangential Sensitivity vs. Frequency.

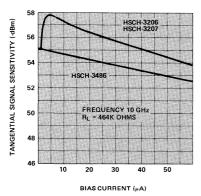


Figure 7. Typical Tangential Sensitivity vs. Bias Current.

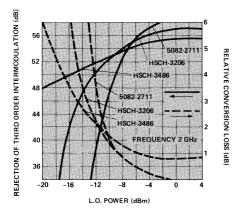


Figure 9. Mixer Performance.

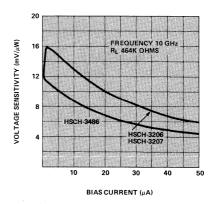


Figure 6. Typical Voltage Sensitivity vs. Bias Current.

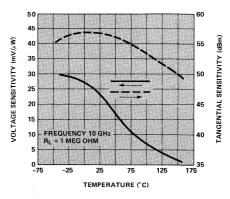


Figure 8. Effect of Temperature on HSCH-3486.

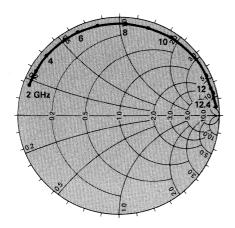


Figure 10. Typical Admittance Characteristics, HSCH-3206.

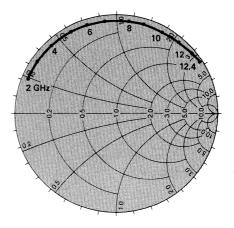


Figure 11. Typical Admittance Characteristics, HSCH-3207.

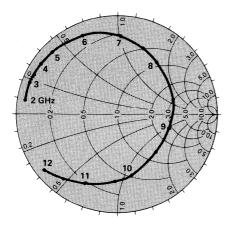


Figure 12. Typical Admittance Characteristics, HSCH-3486.

SCHOTTKY BARRIER DIODES FOR DETECTORS

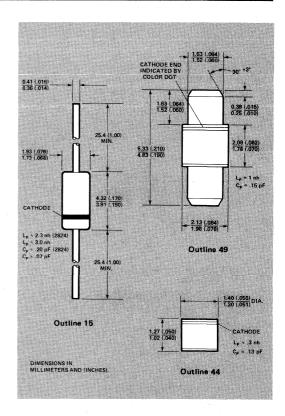
5082-2750/51 5082-2755 5082-2787 5082-2824

Features

IMPROVED DETECTION SENSITIVITY
TSS OF -55 dBm at 10 GHz

LOW 1/f NOISE Typical Noise-Temperature Ratio = 4 dB at 1 kHz

HIGH PEAK POWER DISSIPATION 4.5 W RF Peak Pulse Power


Description / Applications

The low 1/f noise and high voltage sensitivity make these Schottky barrier diodes ideally suitable for narrow bandwidth video detectors, and Doppler mixers as required in Doppler radar equipment, ECM receivers, and measurement equipment.

Maximum Ratings

Junction Operating and Storage Temperature Range 5082-2824 -65°C to +200°C All Others -60°C to +150°C
Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10 ⁷ hours.
DC Power Dissipation — Power Absorbed by Diode Derate Linearly to zero at Maximum Temperature 5082-2824
1 µs, Du = 0.001) 5082-2824 (Power Absorbed by Diode) 4.5 W
All Others (Power Incident) 2.0 W
Maximum Peak Inverse Voltage (PIV) V _{BB}

Note: The 2700 series diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

Package Characteristics

The HP Outline 15 package has a glass hermetic seal with plated Dumet leads which should be restricted so that the bend starts at least 1.16" (1.6 mm) from the glass body. With this restriction, it will meet MIL-STD-750, Method 2036, Conditions A and E (4 lb. [1.8 kg] tension for 30 minutes). The maximum soldering temperature is 230°C for 5 seconds. Marking is by digital coding with a cathode band.

The HP Outline 49 package has a metal-ceramic hermetic seal. The anode and cathode studs are gold-plated Kovar. The maximum soldering temperature is 230°C for 5 seconds. Stud-stud T/R is 0.010" max.

The HP Outline 44 package is a hermetically sealed ceramic package. The anode and cathode are gold-plated Kovar. The maximum soldering temperature is 230°C for 5 seconds.

Electrical Specifications at T_A=25°C

Part Number 5082-	Package Outline	Maximum Tangential Sensitivity TSS (dBm)	Voltage Sensitivity Minimum γ (mV/μW)	Video Resistance R _V (kΩ) Min. Max.		Minimum Breakdowr Voltage V _{BR} (V)
2824		-56	6.0		1.5	-15
2787*	15	-52	3.5	1.2	1.8	
2755	1					4
2751 49 2750 44 Test Conditions		-55	5		1.6	
		Video Bandwidth = 2 MHz f_{RF} = 2 GHz for 5082-2824, 10 GHz for all others I_{BIAS} = 20 μ A; Video Amp.	24, Signal Power Le -40 dBm. Load F		of	I _R = 10 μA

Typical Parameters

Noise Temperature Ratio at f (dB)	Junction Capacitance C _{JO} (pF)
2 at 20 kHz 8 at 1 kHz	1.0
5.0 at 20 kHz 15.0 at 1 kHz	.12
$R_V = 50\Omega$	V = 0

^{*}RF Parameters for the 5082-2787 are sample tested only.

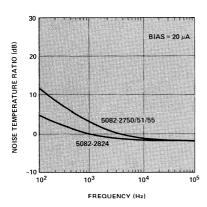


Figure 1. Typical Flicker (1/f) Noise vs. Frequency.

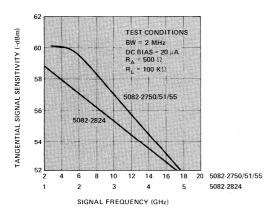


Figure 3. Typical TSS vs. Frequency.

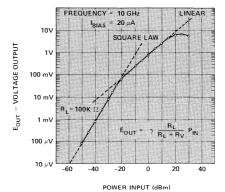


Figure 2. Typical Dynamic Transfer Characteristic. (5082-2750 Series).

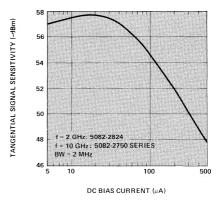


Figure 4. Typical TSS vs. Bias.

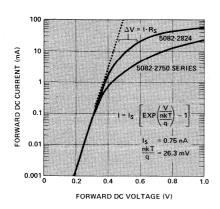


Figure 5. Typical Forward Characteristics at $T_A = 25^{\circ}$ C.

Figure 6. Typical Admittance Characteristics, 5082-2824 with external bias.

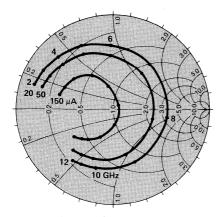


Figure 7. Typical Admittance Characteristics, 5082-2755 with external bias.

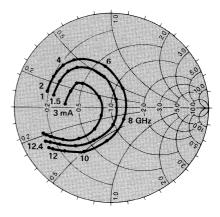


Figure 8. Typical Admittance Characteristics, 5082-2755 with self bias.

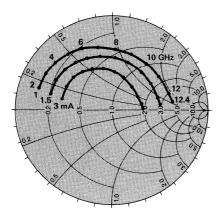


Figure 9. Typical Admittance Characteristics, 5082-2751 with self bias.

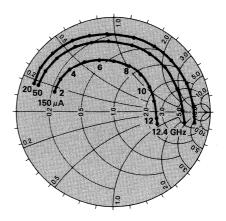


Figure 10. Typical Admittance Characteristics, 5082-2751 with external bias.

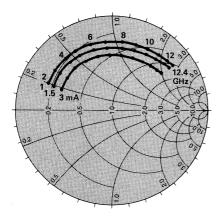


Figure 11. Typical Admittance Characteristics, 5082-2750 with self bias.

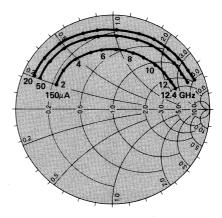


Figure 12. Typical Admittance Characteristics, 5082-2750 with external bias.

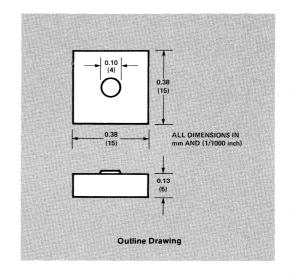
High Reliability Data for Schottky Diodes

HIGH RELIABILITY SCHOTTKY CHIP FOR MEDICAL APPLICATIONS

(Generic 5082-0024)

HSCH-1111

Features


JAN-TXV EQUIVALENT
HIGH BREAKDOWN VOLTAGE
PICO-SECOND SWITCHING SPEED
LOW TURN-ON
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Program Description

Medical life support equipment requires highly reliable components. To meet that requirement, Hewlett-Packard's policy is to supply only components which have been tested in the equivalent of a JAN-TXV program.

The components and documentation supplied conform to the present requirements imposed by the Food and Drug Administration regulations concerning medical devices. It will be standard practice for all orders of life support application components to: (1) be shipped with a statement confirming release to ship by the Product Assurance Department, (2) be provided with traceability of the testing done, and (3) be packaged so they can go into customer stock with minimum handling.

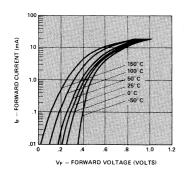
The reliability tests possible for components supplied in chip form are inadequate to condition and screen them thoroughly. The customer must rely on the screening tests he performs on his finished device in order to eliminate chips that are subject to early life failure. To provide the highest confidence that the screening tests on the finished device will be successful, HP will conduct JAN-TXV type qualification tests on packaged samples from the lot of chips and ship only from accepted lots. Qualification data are available upon request.

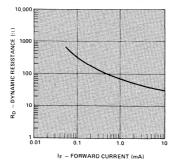
Maximum Ratings

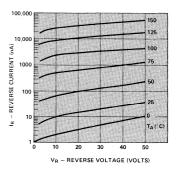
0	perating and Storage Temperature
F	Range65°C to 200°C
	When assembled in hermetic packages, oper-
	ation of these devices within the recommended
	temperature limits will assure a device Mean
	Time to Failure (MTTF) of approximately 1 x 10 ⁷
	hours.
R	everse Voltage (Working) 50 V (peak)
	ower Dissipation at T _{CASE} = 25° C

TABLE I. ELECTRICAL SPECIFICATIONS AT T_A = 25°C (Similar to 5082-0024)

Specification	Symbol	Min.	Max.	Units	Test Condition
Breakdown Voltage	VBR	70		٧	$I_R = 10 \mu\text{A}$
Forward Voltage	VF1	_	.41	V	I _{F1} = 1 mA
Forward Voltage	VF2	_	1.0	٧	I _{F2} = 15 mA
Reverse Leakage Current	I _R	-	50	nA	V _R = 50 V
Capacitance	C _{J(o)}	_	1.7	pF	V _R = 0 V and f = 1 MHz


TABLE II. 100% INSPECTION FOR HSCH-1111 SCHOTTKY CHIPS


Inspection	MIL-STD-750 Method	Conditions
1. Electrical Test (Die Probe) V _{BR} , V _{F1} , I _R , C _{j(o)}		Per Table I.
2. Visual Inspection	2073	


TABLE III. WAFER LOT ACCEPTANCE TEST FOR HSCH-1111

Test/Inspection	MIL-STD-750 Method (except as noted)	Conditions	LTPD
1. Bond Strength	MIL-STD-883 Method 2011, Cond. D	Condition A, n = 11, r = 1	20
 Die Shear Strength (48 hrs. bake at 200° C prior to this test). 	MIL-STD-883 Method 2019	n = 11, r = 1	20
3. Assembly in Suitable Carriers	-		
4. Electrical Test (Go/No Go)			
5. Thermal Shock (Temperature Cycling)	1051		
6. Constant Acceleration	2006	20 KG at Y ₁	
7. Interim Electrical Test (V _F , V _{BR} , I _R , C _J)		Per Table I	
8. High Temperature Life (Non-Operating)	1032	t = 340 Hours at 200° C	10
9. Interim Electrical Test	<u> </u>	Per Table I	
10. Operating Life	1038	Condition B, $I_O = 33$ mA, $V_{RM} = 50$ V, $f = 60$ Hz, $T_A = 25^{\circ}$ C, $f = 340$ hrs.	10
11. Final Electrical Test		Per Table I	
12. Electrical Stability Verification	-	$\Delta V_F \le 41$ mV at 1 mA $\Delta V_{BR} \le 5$ V at 10 μ A $\Delta I_R \le 50$ nA at 50 V	

Typical Parameters

HIGH RELIABILITY BEAM LEAD SCHOTTKY DIODES FOR MIXERS AND DETECTORS

TXVW-5300 SERIES

Features

PLATINUM TRI-METAL SYSTEM Higher Temperature

NITRIDE PASSIVATION Stable, Reliable Performance

LOW NOISE FIGURE 6 dB Typical at 9 GHz

HIGH UNIFORMITY

Tightly Controlled Process Insures Uniform RF Characteristics

RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Description/Applications

This family consists of medium and low barrier microwave Schottky diodes available as hybrid beam leads or mounted in easily handled carrier packages. Hewlett-Packard has developed a cost effective standard test program designed to screen these microwave Schottky diodes for applications requiring high-reliability performance.

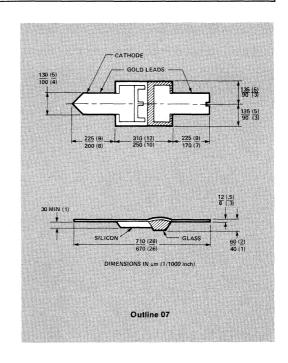


TABLE I. ELECTRICAL SPECIFICATIONS FOR RF TESTED DIODES AT $T_A=25^{\circ}\,\text{C}$

Part Number HSCH-	Barrier	Maximum Noise Figure NF (dB)	Impe	F dance (Ω) Max.	Maximum SWR	Minimum Breakdown Voltage VBR (V)	Maximum Dynamic Resistance RD (Ω)	Maximum Total Capacitance (C _T (pF)	Maximum Leakage Current IR (nA)	Typical Forward Voltage V _F (mV)											
5318		6.2 at 9.375 GHz	222	400	1000	4	12	0.25													
5314	Medium	7.2 at 16 GHz	200	400	1.5,1		18 0.15	500	450												
5338		6.2 at 9.375 GHz		400 1.5.1	100 Page 1	400	12	0.25													
5334	Low	7.2 at 16 GHz	200		400	400	JO 400	200 400	200 400	200 400	0 400	400	1.5,1	1.5,1	10 1.5.1	1.5,1	400 1.5.1	1.5,1	4 18	0.15	500
Test Conditions		DC Load Resistance = 0Ω L.O. Power = 1 mW IF = 30 MHz, 1.5 dB NF				Ι _Α = 10 μΑ	I _F = 5 mA	V _R = 0 V f = 1 MHz	Va = 1V	IF = 1 mA											

ELECTRICAL SPECIFICATIONS FOR DC TESTED DIODES AT $T_A=25^{\circ}\,\text{C}$

Part Number HSCH-	Barrier	Minimum Breakdown Voltage V _{BR} (V)	Maximum Dynamic Resistance R _D (Ω)	Maximum Total Capacitance C _T (pF)	Typical Forward Voltage V _F (mV)
5316			12	0.25	
5312	Medium	4	18	0.15	450
5310			25	0.10	
5336			12	0.25	
5332	Low	4	18	0.15	300
5330			25	0.10	
Test Conditions		I _R = 10 μA	I _F = 5 mA	V _R = 0 V f = 1 MHz	I _F = 1 mA

High Reliability Program

One level of high rel screening is offered for beam lead diodes, which consists of 100% inspection and lot acceptance testing (See Table II). Tables III and IV detail the tests performed. Diodes screened to this program can be ordered as TXVW-53XX.

TABLE II. HIGH RELIABILITY TEST LEVELS

Beam Lead[1]	Inspection Level
HSCH-53XX	Commercial
TXVW-53XX	100% Inspection, visual, and lot acceptance test

Note 1: Beam Leads: Entire HSCH-5300 Series.

TABLE III. 100% INSPECTION PROGRAM FOR HSCH-5300 SERIES BEAM LEADS (OUTLINE 07)

Screening Test/Inspection	MIL-STD-750 Method	Conditions
High Temperature Storage (Stabilization Bake)	-	24 hours at 300° C
2. Electrical Test (Die Probe) V _F , I _R , C _J	-	Per Table I
3. Visual Inspection	HP A5956-0112-72[1]	High Reliability Visual

Notes: 1. Specification available upon request.

TABLE IV. LOT ACCEPTANCE TEST FOR HSCH-5300 SERIES BEAM LEADS (OUTLINE 07)

Test/Inspection	MIL-STD-750 Method (except as noted)	Conditions	LTPD
Beam Pull Test	MIL-STD-883 Method 2011 Cond. H	Condition H (4 grams min.), n = 11, r = 1	20
2. Assemble Samples in H3 Carrier	_		
3. Electrical Test (Go/No Go) VBR, IR, VF, CT		Per Table I	
Temperature Cycle	1051	F - 10 cycles 15 min. at extremes -65° to 200° C	
5. Interim Electrical Test	The second secon	Read and record	
6. High Temperature Life (Non-Operating)	1032	340 hours at 200° C	10
7. High Temperature Reverse Bias (HTRB)	1038	V _R = 1.0 V dC T _A = 150° C, t = 240 hours	-
8. Interim Electrical Test (IR, V _F , C _T)	<u> </u>	Per Table I	1
9. Operating Life (LTPD = 10)	1038	I _O = 10 mA DC T _A = 125° C, t = 340 hours	10
10. Final Electrical Test (IR, VF, Ct)	<u> </u>	Per Table I	
11. Stability Verification		$\Delta C_T = 0.05 \text{ pF}$ $\Delta V_F = 10\%$	

HIGH RELIABILITY BEAM LEAD SCHOTTKY DIODE PAIRS FOR MIXERS AND DETECTORS

TXVW-5500 SERIES

Features

MONOLITHIC PAIR
Closely Matched Electrical Parameters

LOW CAPACITANCE 0.10 pF Max. at 0 Volts

LOW NOISE FIGURE 7.0 dB at 16 GHz

RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull

PLATINUM TRI-METAL SYSTEM
High Temperature

POLYIMIDE SCRATCH PROTECTION

NITRIDE PASSIVATION
Stable, Reliable Performance

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Description/Applications

This family consists of medium and low barrier microwave Schottky diodes available as hybrid beam leads or mounted in easily handled carrier packages. Hewlett-Packard has developed a cost effective standard test program designed to screen these microwave Schottky diodes for applications requiring high-reliability performance.

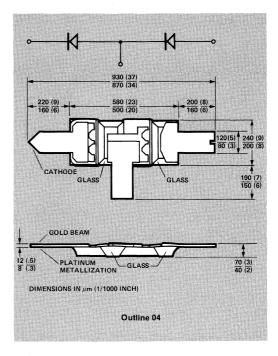


TABLE I. ELECTRICAL SPECIFICATIONS FOR RF TESTED DIODES AT $T_A=25^{\circ} C$

Part Number HSCH-	Barrier	Maximum Noise Figure NF (dB)	Imped Z _{IF} Min.	lance	Maximum SWR	Minimum Breakdown Voltage V _{BR} (V)	$\begin{array}{c} \textbf{Maximum} \\ \textbf{Dynamic} \\ \textbf{Resistance} \\ \textbf{R}_{\textbf{D}}\left(\Omega\right) \end{array}$	(1) 4R _D	Maximum Total Capacitance C _T (pF)	Max. 2C _T (pF)	Maximum Forward Voltage V _F (mV)	Max. 2V _F
5510	Medium	7.0@									500	
5530	Low	16 GHz	200	400	1.5:1	4V	20	3	0.10	0.02	375	10
Test Conditions		DC Load L.O. Pow I _F = 30 N	/er = 1 n	ηW	on	In < 10 μA	IF = 5 m	ıA	V _R = 0\ f = 1 MH		l _F = 1	mA

ELECTRICAL SPECIFICATIONS FOR DC TESTED DIODES AT $T_A=25\,^{\circ}\,\text{C}$

Part Number HSCH-	Barrier	Minimum Breakdown Voltage V _{BR} (V)	Maximum Dynamic Resistance R _D (Ω)	Max. ΔR _D (Ω)	Maximum Total Capacitance C _T (pF)	Max. 2CT	Maximum Forward Voltage V _F (mV)	Max. ² V _F
5511	Medium	4V	20	3	0.10	0.02	500	10
5531	Low	44	20	٥	0.10	0.02	375	10
Test Conditions		I _R = 10 μA	I _F =	5 mA	V _R = 0 f = 1 M		lF =	1 mA

High Reliability Program

One level of high rel screening is offered for beam lead diodes, which consists of 100% inspection and lot acceptance testing (see Table II). Tables III and IV detail the tests performed. Diodes screened to this program can be ordered as TXVW-55XX.

TABLE II. HIGH RELIABILITY TEST LEVELS

Beam Lead[1]	Inspection Level
HSCH-55XX	Commercial
TXVW-55XX	100% Inspection, visual, and lot acceptance test

Note 1: Beam Leads: Entire HSCH-5500 series.

TABLE III. 100% INSPECTION PROGRAM FOR HSCH-5500 SERIES BEAM LEADS (OUTLINE 04)

Screening Test/Inspection	MIL-STD-750 Method	Conditions
High Temperature Storage (Stabilization Bake)	The second secon	24 hours at 300° C
2. Electrical Test (Die Probe)		Per Table I
3. Visual Inspection	HP A5956-0112-72 1	High Reliability Visual

Notes:

TABLE IV. LOT ACCEPTANCE TEST FOR HSCH-5500 SERIES BEAM LEADS (OUTLINE 04)

Test/Inspection	MIL-STD-750 Method (except as noted)	Conditions	LTPD
Beam Pull Test	MIL-STD-883 Method 2011 Cond. H	Condition H (4 grams min.) n = 11, r = 1	20
2. Assemble Samples in H3 Carrier			
3 Electrical Test (Go/No Go)	-	Per Table I	
Temperature Cycle	1051	F - 10 cycles 15 min. at extremes -65° to 200° C	
5. Interim Electrical Test (I _R , V _F , C _T)	-	Per Table I	
6. High Temperature Life (Non-Operating)	1032	340 hours at 200° C	10
7. High Temperature Reverse Bias (HTRB)	1038	V _R = 1.0 V dC T _A = 150° C, t = 240 hours	
8. Interim Electrical Test (IR, VF, CT)		Per Table I	
9. Operating Life (LTPD = 10)	1038	I _O = 10 mA DC T _A = 125° C, t = 340 hours	10
10. Final Electrical Test (I _R , V _F , C _T)	——————————————————————————————————————	Per Table I	
11. Stability Verification		$\begin{array}{c} \Delta \text{ CT} = 0.05 \text{ pF} \\ \Delta \text{ VF} = 10\% \end{array}$	-

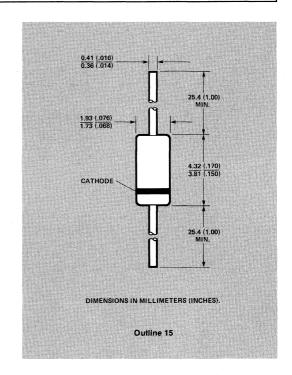
^{1.} Specification available upon request.

HIGH RELIABILITY SCHOTTKY BARRIER DIODES FOR MIXERS AND DETECTORS

HSCH-0813 HSCH-0814 HSCH-0815 HSCH-0816

(Generic 5082-2301, -2306, -2400, -2401)

Features


LOW 1/F NOISE
LOW AND STABLE NOISE FIGURE
HIGH UNIFORMITY
HIGH BREAKDOWN VOLTAGE: 30 VOLTS
MATCHED CHARACTERISTICS AVAILABLE
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Description

The HSCH-0813, -0814, -0815, -0816 devices are unpassivated Schottky diodes in a glass package. These diodes have extremely low 1/f noise and are ideal for low noise mixing, and high sensitivity detecting. They are particularly well suited for use in Doppler or narrow band video receivers.

Maximum Ratings

Derate linearly at 1.33 mW/° C to zero at 100° C

TABLE I. ELECTRICAL SPECIFICATIONS FOR RF TESTED DIODE AT $T_A=25^{\circ}\,\text{C}$

(Similar to 5082-2400)

Part Number HSCH-	Matched Pair* HSCH-	Barrier	LO Test Frequency (GHz)	Maximum SSB Noise Figure NF (dB)	,	pedance ε (Ω) Max.	Maximum SWR	Maximum Capacitance C _T (pF)	Minimum Breakdown Voltage V _{BR} (V)
0814	0813	Medium	2.0	6.0	150	350	1.3:1	1.0	30
Test Conditions	$\Delta NF \le 0.3 \text{ dB}$ $\Delta Z_{IF} \le 25 \Omega$		LO Power = IF = 30 MHz, Zero DC Los		Same except IF = 10		Same as for NF	V _R = 0V f = 1.0 MHz	I _R = 10 μA

^{*}Match performed after 100% screening.

ELECTRICAL SPECIFICATIONS FOR DC TESTED DIODE AT $T_A=25^{\circ}\,\text{C}$

(Similar to 5082-2301)

Part Number HSCH-	Matched Pair* HSCH-	Minimum Breakdown Voltage V _{BR} (V)	Maximum Forward Voltage V _F (mV)	V _F = 1V Max. at Forward Current I _F (mA)	Maximum Reverse Leakage Current I _R (nA) at V _R (V)	Maximum Capacitance C _T (pF)
0816	0815	30	400	50	300 15	1.0
Test Conditions	$\Delta V_F \le 10 \text{ mV}$ $\Delta C_O \le 0.2 \text{ pF}$	I _R = 10 μA	I _F = 1 mA			V _R = 0 V f = 1.0 MHz

^{*}Match performed after 100% screening.

High Reliability Conditioning and Lot Acceptance

(All test methods are per MIL-STD-750 unless otherwise specified)

100% SCREENING PROGRAM

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments
Internal Visual Inspection	<u> </u>	Per H.P. Method A-5956-0562-72
High Temperature Storage (Stabilization Bake)	1032	t = 48 hours., T _A = 100° C
3. Thermal Shock (Temperature Cycling)	1051	Condition B55° C to +100° C
4. Constant Acceleration	2006	200 KG. Y ₁ axis.
5. Hermeticity Tests Fine Leak Gross Leak	1071	Condition H. Condition E.
6. Interim Electrical Tests (VBR, IR, VF)	AND THE RESERVE OF THE PERSON NAMED IN	Per Table I. T _A = 25° C.
7. Burn-in	1038	P _{FM} = 75 mW, V _R = 15 V (pk) T _A = 25° C f = 60 Hz., t = 168 hours
8. Final Electrical Tests (VBR, IR, VF)		Per Table I. T _A = 25° C
9. Drift Evaluation PDA = 10%[1]		$\Delta I_R = 200$ nA or 100% whichever is greater $\Delta V_F = \pm 50$ mV.
10. Electrical Tests (NF, SWR) HSCH-0813 and HSCH-0814 only		

GROUP A INSPECTION

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 External Visual and Mechanical	2071		5
Subgroup 2 Electrical Test (C _T)		Per Table I.	10
Subgroup 3 D.C. and RF Parameters at 25° C		Satisfied by 100% measurements at post burn-in.	

GROUP B INSPECTION

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Moisture Resistance End Points (VBR, IR, VF)	1021	Omit initial conditioning Per Table I.	10
Subgroup 2 High Temperature Non Operating Life End Points (VBR, IR, VF)	1031	T _A = 100°C, t = 1000 hours Per Table I.	10
Subgroup 3 Operating Life End Points (V _{BR} , I _R , V _F)	1038	P _{FM} = 75 mW, V _R = 15 V (peak), f = 60 Hz, T _A = 25° C, t = 1000 hours,	10

Note:

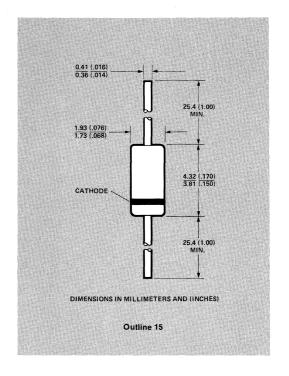
1. If rejects are greater than 10% but less than 20%, one more burn-in may be performed with a new 10% PDA.

SCHOTTKY SWITCHING DIODE MILITARY APPROVED MIL-S-19500/444

JAN 1N5711 JANTX 1N5711 JANTXV 1N5711

Features

HIGH BREAKDOWN VOLTAGE
PICO-SECOND SWITCHING SPEED
LOW TURN-ON


Description/Applications

Operating and Storage Temperature

The JAN Series 1N5711 is an epitaxial, planar passivated Schottky Barrier Diode designed to have pico-second switching speed. These devices are well suited for high level detecting, mixing, switching, gating and converting, video detecting, frequency discriminating, sampling, and wave shaping applications that require the high reliability of a JAN/JANTX device.

Maximum Ratings at T_{CASE} = 25°C

Range65°C to 200°C
Operation of these devices within the recommended temperature limits will assure a device Mean Time to Failure (MTTF) of approximately 1 x 10 ⁷ hours.
Reverse Voltage (Working) 50 V (peak)
Power Dissipation at T _{CASE} = 25° C 250 mW
Derate linearly at 1.43 mW/° C to zero at 200° C

TABLE I. ELECTRICAL SPECIFICATIONS AT T_A = 25^{\circ} C (Unless otherwise specified) (Per Table I, Group A Testing of MIL-S-19500/444)

Specification	Symbol	Min.	Max.	Units	Test Conditions
Breakdown Voltage	V _{BR}	70		V	Ι _R = 10μΑ
Forward Voltage	V _{F1}	-	.41	V	I _{F1} = 1mA
Forward Voltage	V _{F2}	-	1.0	V	I _{F2} = 15mA
Reverse Leakage Current	I _R	-	200	nA	V _R = 50V
Reverse Leakage Current	I _R	-	200	μА	V _R = 50V, T _A = +150°C
Capacitance	C _{T(o)}		2.0	pF	$V_{R} = 0V$ and $f = 1MHz$
Effective Minority Carrier Lifetime	τ	_	100	pS	I _F = 5mA Krakauer Method [Note 1]

Note 1: Per DESC drawing C-68001

JAN 1N5711: Samples of each lot are subjected to Group A inspection for parameters listed in Table I, and to Group B and Group C tests listed below. All tests are to the conditions and limits specified by MIL-S-19500/444.

JANTX 1N5711: Devices undergo 100% screening tests as listed below to the conditions and limits specified by MIL-S-19500/444***. A sample of the JANTX lot is then subjected to Group A, Group B, and Group C tests as for the JAN 1N5711 above.

JANTXV 1N5711: Devices are subject to 100% visual inspection in accordance with MIL-S-19500/444 prior to being subjected to TX screening.

TABLE II. 100% SCREENING PROGRAM

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments
1. High Temperature Storage (Stabilization Bake)	,	
2.Thermal Shock (Temperature Cycling)	1051	Condition F, 10 Cycles
3. Centrifuge (Constant Acceleration)	2006	20 KG, Y ₁ axis.
4.Hermeticity Tests Fine Leak Gross Leak	1071	Condition H. Condition E
5.Interim Electrical Tests (IR, V _F)		See Table I
6.Burn-In	1038	I _O = 33 mA, V _R = 50 V (peak) T _A = 25° C, f = 60 Hz, T = 96 hours.
7. Final Electrical Tests and Drift Evaluation (IR, VBR) 10% PDA		$\Delta I_{R} \le 50$ nA or 100% whichever is greater $\Delta V_{F} = \pm 41$ mV dc.

TABLE III. GROUP A INSPECTION

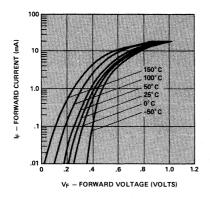
Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		5
Subgroup 2 Electrical Tests at 25° C		VBR, VF1, VF2, IR1, CTO and τ per Table I.	2
Subgroup 3 High Temperature Operation (T _A = 150°C) Reverse Currrent (I _{R2})		Per Table I.	5

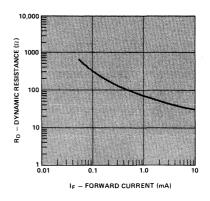
TABLE IV. GROUP B INSPECTION

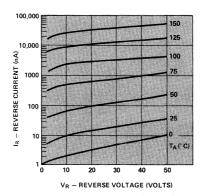
Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD	
Subgroup 1 Physical Dimensions	2066	2066	15	
Subgroup 2				
Solderability	2026	Immerse to within 0.1 inch of body.	10	
Thermal Shock (Temperature Cycling)	1051	Condition C, 10 Cycles		
Thermal Shock (Glass Strain)	1056	Condition A		
Terminal Strength (Tension)	2036	Condition A, 15 secs., 2 lbs.		
Hermetic Seal	1071	Condition E		
Moisture Resistance	1021	Omit initial conditioning		
End Points:				
Breakdown Voltage (VBR)	4021	Per Table I		
Forward Voltage (V _F)	4011	Per Table I		
Reverse Current (IR1)	4011	Per Table I		

^{***}JANTX and JANTXV devices have gold plated leads.

TABLE IV. GROUP B INSPECTION (Cont.)


Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 3			
Shock	2016	Non-operating; 1500 G; t = 0.5 ms, 5 blows in each orientation X ₁ , Y ₁ , Y ₂	10
Vibration Variable Frequency	2056	Non-operating	
Constant Acceleration	2006	Non-operating; 20 KG; X ₁ , Y ₁ , Y ₂	
End Points: (same as Subgroup 2)	Andrew Transport		100
Subgroup 4			
Terminal Strength; Lead Fatigue	2036	Condition E with lead restriction.	10
Subgroup 5	200		and the second
High Temperature Life (Non-Operating)	1031	T _A = 200° C,[1]	$\lambda = 3$
End Points:			
Breakdown Voltage (VBR)	4021	63 V min. at 10 μA	
Forward Voltage (V _F)	4011	1.05 V max. at 15 mA	
Reverse Current (I _R)	4016	300 nA max. at 50 V	
Subgroup 6			
Steady State Operating Life	1026	I _O = 33 mA (avg.); V _R = 50 V	$\lambda = 3$
End Points: (same as Subgroup 5)		(peak) f = 60 Hz, T _A = 25° C, ^[1]	


^{1.} t = 1000 hours every 6 months to qualify product, t = 340 hours on each lot thereafter.


TABLE V. GROUP C INSPECTION

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Salt Atmosphere (Corrosion)	1041		20
Subgroup 2 Resistance to Solvents	MIL-STD-202 Method 215		10
Subgroup 3 Thermal Shock (Temperature Cycling) End Points: Breakdown Voltage (VBR) Forward Voltage (VF2) Reverse Current (IR1)	4021 4011 4016	Condition C. 25 cycles; time at temperature extremes = 15 minutes min. total test time = 72 hours max. Per Table I Per Table I Per Table I	10
Subgroup 4 Low Temperature Operation (-65° C) Forward Voltage (VF1) Forward Voltage (VF2) Breakdown Voltage (VBR)		0.55 V at 1 mA 1.0 V at 15 mA 70 V at 10 µA	20

Typical Parameters

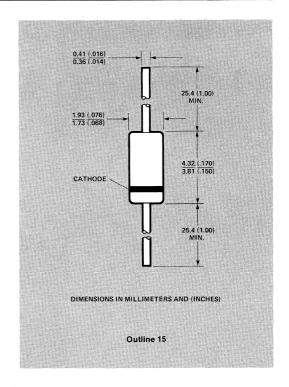
SCHOTTKY SWITCHING DIODE MILITARY APPROVED MIL-S-19500/445

JAN 1N5712 JANTX 1N5712 JANTXV 1N5712

Features

PICO-SECOND SWITCHING SPEED LOW TURN-ON VOLTAGE LOW TEMPERATURE COEFFICIENT

Description/Applications


The JAN Series 1N5712 is an epitaxial, planar passivated Schottky Barrier Diode designed to have pico-second switching speed. These devices are well suited for VHF/UHF mixing and detecting, A/D converting, and switching applications that require the high reliability of a JAN/JANTX device.

Maximum Ratings

Operating and Storage Temperature

Range-65° C to 200° C

Operation of these devices within the recommended temperature limits will assure a device Mean Time To Failure (MTTF) of approximately 1 x 107 hours.

TABLE I. ELECTRICAL SPECIFICATIONS AT TA = 25°C

(Per Table I, Group A Testing of MIL-S-19500/445)

Specification	Symbol	Min.	Max.	Units	Test Conditions
Breakdown Voltage	V _{BR}	20		V _{dc}	$I_R = 10 \mu A dc$
Forward Voltage	VF1	14	0.55	V _{dc}	I _{F1} = 1 mA dc
Forward Voltage	V _{F2}		1.0	V _{dc}	I _{F2} = 35 mA dc
Reverse Leakage Current	I _{R1}		150	nA dc	V _R = 16 V dc
Reverse Leakage Current	IR2		150	μA dc	V _R = 16 V dc, T _A = 150° C
Capacitance	Ст(о)		1.2	pF	V _R = 0 V and f = 1 MHz
Effective Minority Carrier Lifetime	т		100	pS	I _F = 5 mA Krakauer Method ^[1]

Notes

^{1.} Per DESC drawing C-68001.

JAN 1N5712: Samples of each lot are subjected to Group A inspection for parameters listed in Table I, and to Group B and Group C tests listed below. All tests are to the conditions and limits specified by MIL-S-19500/445.

JANTX 1N5712: Devices undergo 100% screening tests as listed below to the conditions and limits specified by MIL-S-19500/445*. A sample of the JANTX lot is then subjected to Group A, Group B, and Group C tests as for the JAN 1N5712 above.

JANTXV 1N5712: Devices are subject to 100% visual inspection in accordance with MIL-S-19500/445 prior to being subjected to TX screening.

TABLE II. 100% SCREENING PROGRAM

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments	
High Temperature Storage (Stabilization Bake)	1032	t = 48 hours, T _A = 200° C	
2.Thermal Shock (Temperature Cycling)	1051	Condition C, 10 Cycles	
3. Centrifuge (Constant Acceleration)	2006	20 KG, Y ₁ axis.	
4.Hermeticity Tests Fine Leak Gross Leak	1071	Condition G or H. Condition E	
5.Interim Electrical Tests (IR, V _F)		See Table I	
6.Burn-In	1038	I _O = 33 mA (average), V _R = 16 V (peak) T _A = 25° C, f = 60 Hz, T = 96 hours.	
7. Final Electrical Tests and Drift Evaluation (IR1, VF1) 10% PDA		$\Delta l_{R1} \le 30$ nA or 100% whichever is greater $\Delta V_{F1} = \pm 55$ mV	

TABLE III. GROUP A INSPECTION

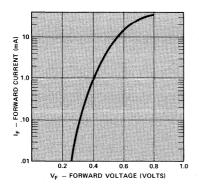
Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		5
Subgroup 2 DC Electrical Tests at 25° C	_	V _{BR} , V _{F1} , V _{F2} , I _{R1} , CT _O , τ per Table I.	2
Subgroup 3 High Temperature Operation (TA = 150°C) Reverse Currrent (IR2)	4016	per Table I.	2

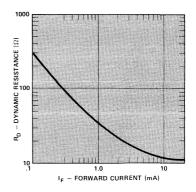
TABLE IV. GROUP B INSPECTION

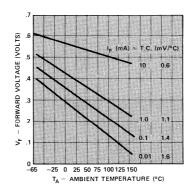
Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD	
Subgroup 1 Physical Dimensions	2066		15	
Subgroup 2				
Solderability	2026	Immerse to within 0.1 inch of body.	10	
Thermal Shock (Temperature Cycling)	1051	Condition C, 10 Cycles		
Thermal Shock (Glass Strain)	1056	Condition A		
Terminal Strength (Tension)	2036	Condition A, 15 secs., 2 lbs.		
Hermetic Seal	1071	Condition E		
Moisture Resistance	1021	Omit initial conditioning		
End Points:				
Breakdown Voltage (VBR)	4021	Per Table I		
Forward Voltage (VF2)	4011	Per Table I		
Reverse Current (IR1)	4011	Per Table I		

^{*}JANTX and JANTXV devices have gold plated leads.

TABLE IV. GROUP B INSPECTION (Cont.)


Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 3		SECTION OF THE PROPERTY OF THE PARTY OF THE	14.5° (44.5°)
Shock	2016	Non-operating; 1500 G; t = 0.5 ms, 5 blows in each orientation X ₁ , Y ₁ , Y ₂	10
Vibration Variable Frequency	2056	Non-operating	
Constant Acceleration	2006	Non-operating; 20 KG; X ₁ , Y ₁ , Y ₂	
End Points: (same as Subgroup 2)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Subgroup 4			
Terminal Strength; Lead Fatigue	2036	Test Condition E with lead restriction.	10
Subgroup 5			parties and
High Temperature Life (Non-Operating) End Points:	1031	T _A = 200° C, 11	λ = 3
Breakdown Voltage (V _{BR})	4021	18 V min. at 10 μA	
Forward Voltage (VF2)	4011	1.05 V max. at 35 mA	
Reverse Current (IR1)	4016	200 nA max. at 16 V	
Subgroup 6			
Steady State Operating Life	1026	Io = 33 mA; V _R = 50 V	$\lambda = 3$
End Points: (same as Subgroup 5)		(peak) f = 60 Hz, T _A = 25°C,[1]	


^{1.} t = 1000 hours every 6 months to qualify product, t = 340 hours on each lot thereafter.


TABLE V. GROUP C INSPECTION

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Salt Atmosphere (Corrosion)	1041		20
Subgroup 2 Resistance to Solvents	MIL-STD-202 Method 215		10
Subgroup 3 Thermal Shock (Temperature Cycling) End Points:	1051	Condition C. 25 cycles; time at temperature extremes = 15 minutes min., total test time = 72 hours max.	10
Breakdown Voltage (V _{BR})	4021	Per Table I	
Forward Voltage (VF2) Reverse Current (IR1)	4011 4016	Per Table I Per Table I	
Subgroup 4 Low Temperature Operation (-65° C) Forward Voltage (VF1)	4011	Per Table I	20
Forward Voltage (V _{F2}) Breakdown Voltage (V _{BR})	4011 4021	Per Table I Per Table I	

Typical Parameters

HIGH RELIABILITY GENERAL PURPOSE SCHOTTKY BARRIER DIODES

TX-2810 TX-2811 TXB-2810 TXB-2811 TXV-2810 TXV-2811 TXVB-2810 TXVB-2811

(Generic 5082-2810 and -2811)

Features

MEDIUM TURN-ON VOLTAGE

PICO-SECOND SWITCHING SPEED

HERMETIC PACKAGE

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Description/Applications

The 5082-2810 and -2811 are passivated Schottky diodes which use a patented "guard ring" design to achieve a high breakdown voltage. They are packaged in a hermetically sealed glass package. They are well suited for high level detecting, mixing, switching, gating, log or A-D converting, video detecting, frequency discriminating, sampling, and wave shaping.

Maximum Ratings

Operating and Storage Temperature
Range65° C to +200° C
Peak Inverse Voltage VBR
Power Dissipation at T _{CASE} = 25° C 250 mW
Derate linearly at 1.43 mW/° C to zero at 200° C
Maximum Solder Temperature 230°C for 5 seconds

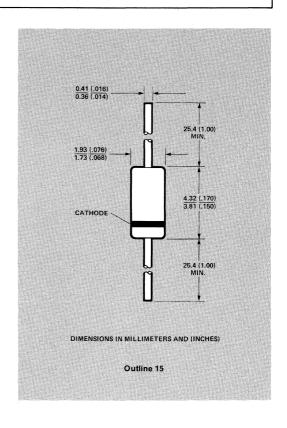


TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A=25^{\circ}$ C (UNLESS OTHERWISE SPECIFIED) Similar to 5082-2810 and 5082-2811

Part Number 5082-	Minimum Breakdown Voltage V _{BR} (V)	Maximum Forward Voltage V _F (mV)	V _F = 1 V Max. at Forward Current I _F (mA)	Rev Leal Cur	mum erse kage rent at V _R (V)	Rev Leal Current	mum erse kage at 125° C at V _R (V)	Maximum Capacitance C _T (pF)
2810	20	410	35	100	15	150	15	4.0
2811	15	410	20	100	8	100	8	1.2
Test Conditions	I _R = 10 μA	I _F = 1 mA						V _R = 0 V f = 1.0 MHz

High Reliability Programs

Three basic levels of High-Rel testing are offered.

- The TX prefix indicates a part that is preconditioned and screened to the program shown in Table III and IV.
- The TXB prefix identifies a part that is preconditioned and screened to TX level with a Group B quality conformance test as shown in Table V.
- The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is included as part of the preconditioning and screening.

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

TABLE II. PART NUMBER SYSTEM FOR ORDER AND RFQ INFORMATION

Part Number	Screening Level
5082-2810 5082-2811	Commercial
TX-2810	100% Screen (per Tables III
TX-2811	and IV)
TXB-2810	100% Screen and Group B (per
TXB-2811	Tables III, IV and V)
TXV-2810	100% Screen and Visual (per
TXV-2811	Tables III and IV)
TXVB-2810	100% Screen and Group B (per
TXVB-2811	Tables III, IV and V) with visual

TABLE III. 100% SCREENING PROGRAM

Screening Test/Inspec	lion	MIL-STD-750 Method	Conditions/Comments
Internal Visual (TXV only)	and the same of th	2074	
2. High Temperature Storage (Stabiliza	tion Bake)	1032	t = 48 hours, T _A = 200° C
3. Thermal Shock (Temperature Cyclin	g)	1051	Condition C, 10 Cycles
4. Constant Acceleration		2006	20 KG, Y ₁ axis
5. Hermeticity Tests	Fine Leak Gross Leak	1071	Condition H Condition C
6. Interim Electrical Tests (V _F , I _{R1})			Per Table I
7. Power Burn-In		1038	Condition B, t = 96 hours, T _A = 25° C, V _R = 80% V _{BR} , f = 60 Hz, I _O = 20 mA DC (5082-2811), 33 mA DC (5082-2810)
Final Electrical Tests (See Table I) an Verification	nd Stability		$\Delta V_F = \pm 55$ mV, $\Delta I_{R1} = \pm 20$ nA or 100% whichever is greater (5082-2811), $\Delta I_{R1} = \pm 30$ nA or 100% whichever is greater (5082-2810)

TABLE IV. GROUP A ACCEPTANCE TEST

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		5
Subgroup 2 DC Electrical Tests at 25° C	-	See Table I for Tests and Conditions (Read and Record)	5
Subgroup 3 Reverse Leakage (I _R) at T _A = 125° C		See Table I for Tests and Conditions (Read and Record)	5

TABLE V. GROUP B ACCEPTANCE TEST

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1			
Physical Dimension	2066		15
Subgroup 2			
Solderability	2026		15
Resistance to Solvents	1022		
Electrical Test at 25° C (IR1, VF)		See Table I	
Subgroup 3			
Temperature Cycling	1051	Condition C, 10 Cycles	10
Thermal Shock	1056	Condition A	
Terminal Strength	2036	Condition A	
Hermetic Seal	1071		
Fine Leak	,0,	Condition H	
Gross Leak	10.00	Condition C	1000
Moisture Resistance	1021	OGNIGION O	
Visual and Mechanical	2071	The second second second second	
Electrical Test at 25°C (I _{R1} , V _F)	2011	See Table I	
Subgroup 4			
Mechanical Shock	2016		10
Vibration, Variable Frequency	2056		
Constant Acceleration	2006		
Electrical Test at 25° C		See Table I	
Subgroup 5			
Terminal Strength	2036	Condition E	15
Subgroup 6			
High Temperature Life	1032	t = 340 hours, T _A = 200° C	5
(Non-operating)			
Electrical Test at 25° C (IR1, VF)		See Table I	
Electrical Stability Verification		$\Delta V_F = \pm 55$ mV, $\Delta I_R = \pm 20$ nA or	
area real real real real real real real		100% whichever is greater (5082-2811)	
		Δ IR = ±30 nA or 100%	
		whichever is greater (5082-2810)	
Subgroup 7			
Steady State Operating Life	1027	t = 340 hours, T _A = 25° C, f = 60 Hz.	5
,		V _B = 80% V _{BB} , I _O = 20 mA DC	
	100	(5082-2811)	
		In = 33 nA DC (5082-2810)	
Electrical Test at 25°C (IR1, VF)		See Table I	
Electrical Stability Verification		See Table I $\Delta V_F = \pm 55 \text{ mV}, \Delta I_B = \pm 20 \text{ nA or}$	
Liceting Glability Verification		100% whichever is greater (5082-2811)	
		Δ In = ±30 nA or 100%	
		whichever is greater(5082-2810)	
		withchever is greater(5062-2610)	

HIGH RELIABILITY SCHOTTKY SWITCHING DIODES

TXV-2835 TXB-2835 TXVB-2835

TX-2835

(Generic 5082-2835)

Features

SUITABLE FOR SPACE APPLICATIONS

LOW TURN-ON VOLTAGE

FAST SWITCHING

PLANAR PASSIVATED

LOW TEMPERATURE COEFFICIENT

UNIFORM FORWARD TRACKING

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Description/Applications

The TX-2835 is an epitaxial, planar passivated diode whose construction utilizes a metal-to-silicon junction. This results in extremely low forward voltage drops and ultra high speed switching, for applications that require high reliability screening.

The low forward voltage drop, combined with fast switching and high temperature capability, makes these devices attractive as replacements for germanium and silicon P/N junction diodes in such applications as low level switching, clamping, sampling, reference circuits, and low noise UHF mixers.

The uniformity of forward characteristics with current over the temperature range also makes these units suitable for circuitry requiring tight matching of characteristics.

Maximum Ratings

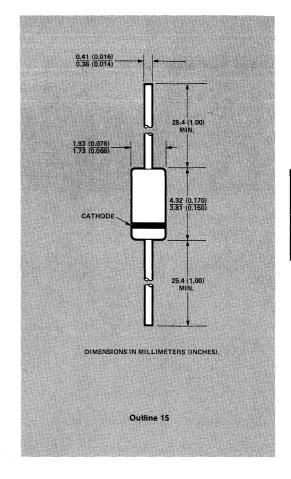


TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}$ C

Characteristics	Symbol	Min.	Max.	Units	Test Conditions
Breakdown Voltage	VBR	8		volts	In = 100 μA
Reverse Current	I _{R1}		100	nA	V _R = 1 V
Reverse Current	In2		100	μΑ	V _R = 1 V, t = 125°C
Forward Voltage	V _{F1}	100	0.34	volts	I _F = 1 mA
Forward Voltage	VF2		0.45	volts	IF = 10 mA
Capacitance	Сто		1.0	pF	V _R = 0, f = 1 MHz
Effective Minority Carrier Lifetime	T		100	psec	I _F = 20 mA

PART NUMBER SYSTEM FOR ORDER AND RFQ INFORMATION

TX-2835	Devices undergo 100% screening as specified in Table II and Table III (excluding step 1).
TXV-2835	Devices undergo 100% screening per Table II and Table III.
TXB-2835	Following 100% screen per Table II (delete step 1), samples of lot are subjected to Group A (Table III), and Group B (Table IV).
TXVB-2835	Complete screen and lot qualification per Tables II-IV.

TABLE II. 100% SCREENING PROGRAM

Screening Test/Inspection	MIL-STD-750 Method (Except as Noted)	Conditions	
1. Internal Visual	2074		
2. High Temperature Storage	1032	48 Hours minimum at 150° C	
3. Temperature Cycling	1051	Condition F — 20 cycles, 10 minutes at extremes (-60° C to ±150° C)	
4. Constant Acceleration	2006	20 KG, Y ₁ axis	
5. Hermetic Seal Fine Leak Gross Leak	1071	Condition H. 5 × 10 ⁻⁸ cc/sec max. Condition E	
6. Interim Electrical Test Int, VBR, CTO, VF1, VF2		Read and Record	
7. Burn-In	1038	Condition B, P _{FM} = 150 mW pk., V _{RM} = 5 V pk., f = 60 Hz, t = 168 hr. min., T _A = 25°C	
8. Final Electrical Test		Same as Step 7	
Electrical Stability Verification		ΔI _{R1} ≤ 50 nA or 100% of initial value, whichever is greater ΔV _{F1} ≤ 10% of initial value	
10. Percent Defective Allowable (PDA)		10% of devices submitted to burn-in.	

TABLE III. GROUP A ACCEPTANCE TEST

Test/Inspection	MIL-STD-750 Method	Conditions	LTPD
Subgroup 1 External Visual Inspection	2071		5
Subgroup 2 Electrical Test IR1, VBR, CTO, VF1, VF2 at TA = 25° C		See Table I (Read and Record)	3
Subgroup 3 Electrical Test at TA = 25° C Carrier Lifetime (7)		See Table I (Read and Record)	3
Subgroup 4 Electrical Test Reverse Leakage (I _R) at T _A = 125° C		See Table I (Read and Record)	7

TABLE IV. GROUP B PROGRAM

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Solderability Resistance to solvents	2026 1022		15
Subgroup 2 Thermal Shock (Temperature Cycling) Hermetic Seal Fine Leak Gross Leak DC Electrical Tests (I _R and V _F)	1051 1071	Condition F1 (25 cycles) Condition H Condition C or E See Table I.	10
Subgroup 3 Steady State Operating Life DC Electrical Tests (I _R and V _F)	1027	t = 340 hours, T _A = 25°C, PFM = 200 mW, f = 60 Hz, V _{RM} = 56 V See Table I.	5
Subgroup 4 Decap Internal Visual (Design Verification) Bond Strength	2075 2037		20
Subgroup 5 High Temperature Life (Non-Operating) DC Electrical Tests (I _R and V _F)	1032	t = 340 hours, T _A = 150° C See Table I.	7

HIGH RELIABILITY ZERO BIAS SCHOTTKY DETECTOR DIODE

(Generic HSCH-3486)

HSCH-0812

Features

HIGH TANGENTIAL SENSITIVITY
NO BIAS REQUIRED
HERMETIC GLASS PACKAGE
QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

Description/Applications

The high tangential sensitivity of these Schottky Barrier diodes makes them ideally suitable for narrow bandwidth video detectors, ECM receivers, and measurement equipment. These diodes also make excellent mixers for use with low power LO.

Maximum Ratings

Operating and Storage Temperature Range65°C to +150°C Operation of these devices within the above
temperature ratings will assure a device
Median Time To Failure (MTTF) of approx-
imately 1 x 10 ⁷ hours.
CW Power Dissipation at T _{CASE} = 25° C 300 mW
Derate linearly at 2.40 mW/° C to zero at 150° C
Pulse Power Dissipation
Peak Power absorbed by the diode at $T_A = 25^{\circ}$ C
1 μ s pulse, Du = 0.001
These diades are ECD sensitive Handle with some to sweld

These diodes are ESD sensitive. Handle with care to avoid static discharge through the diode.

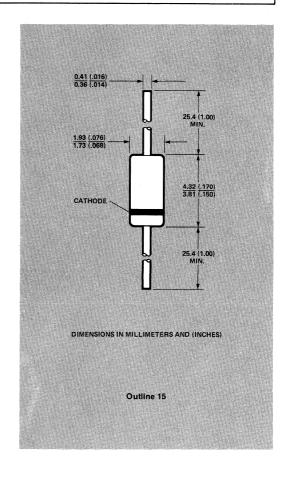


TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}$ C

Part Number	Maximum Tangential Sensitivity TSS (dBm)	Minimum Voltage Sensitivity γ (mV/μw)	Resis	deo stance (KΩ) I Max.	Maximum Forward Viktage V _F (mV)
HSCH-0812 (Screened HSCH-3486)	-54	7.5	2	8	400
Test Conditions	Video Bandwidth = 2 MHz f _{test} = 10 GHz	Power in = -40 dBm ftest = 10 GHz		I _F = 1 mA	

Typica Total Capac C _T (pF	itance
0.30	
V _R = 0 f = 1 Mi	

High Reliability Conditioning and Acceptance Testing

(All methods are per MIL-STD-750 unless otherwise specified)

100% SCREENING PROGRAM

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments	
Internal Visual Inspection		Per H.P. Method A-5956-0562-72	
High Temperature Storage (Stabilization Bake)	1032	t = 48 hours., T _A = 150° C	
3. Thermal Shock (Temperature Cycling)	1051	-65° C to +150° C, 10 cycles, 30 minutes per cycle	
4. Constant Acceleration	2006	200 KG. Y ₁ axis.	
5. Hermeticity Tests Fine Leak Gross Leak	1071	Condition G or H. Condition A or C. Step 1 only.	
6. Interim Electrical Tests (V _F)		Per Table I. T _A = 25° C.	
7. Burn-in	1038	P = 10 mW, T _A = 25° C, t = 168 hours	
8. Final Electrical Tests (V _F)		Per Table I. T _A = 25° C	
9. Drift Evaluation PDA = 15[1]		$\Delta V_F = \pm 5 \text{ mV}$	
10. Electrical Tests. RF Parameters	3. 100 (200)		

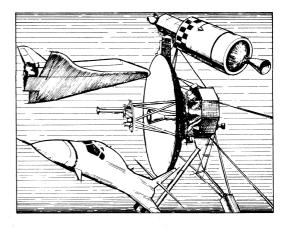
Note

GROUP A ACCEPTANCE TEST

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		15
Subgroup 2 DC Electrical Tests at 25° C		Per Table I	5

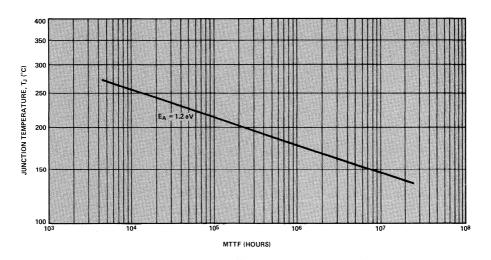
^{1.} If rejects are greater than 15% but less than 30%, one more burn-in may be performed with a new 10% PDA.

Reliability Data for Schottky Diodes


RELIABILITY DATA PASSIVATED GENERAL PURPOSE SCHOTTKY DIODES

Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is compiled from reliability tests run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this sheet represents the latest review of accumulated test results. All data recorded here is for passivated Schottky diodes mounted in hermetically sealed glass packages.


Applications

This information represents the capabilities of the generic device. Failure rate and MTTF values presented here are achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by testing specific lots, under specified conditions and LTPD levels.

Applicable Part Numbers

1N5711	5082-0097	5082-2815
1N5712	5082-2080	5082-2817
1N6263	5082-2800	5082-2818
5082-0024	5082-2804	5082-2824
5082-0031	5082-2805	5082-2826
5082-0057	5082-2810	5082-2835
5082-0058	5082-2811	5082-2836
5082-0087	5082-2813	HSCH-1001
5082-0094	5082-2814	

Mean Time to Failure vs. Junction Temperature

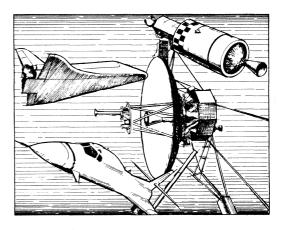
Burn-In and Storage

Test	Test Conditions[1]	LTPD per 1000 Hours
High Temperature Life	Storage at: 200° C	2.0
Steady State Operating Life	P _{FM} = 250 mW V _{RM} = 80% of V _{BR} T _A = 25° C f = 60 Hz	2.0
High Temperature Reverse Bias	V _R = 80% of V _{BR} T _A = 200° C	2.0

Environmental

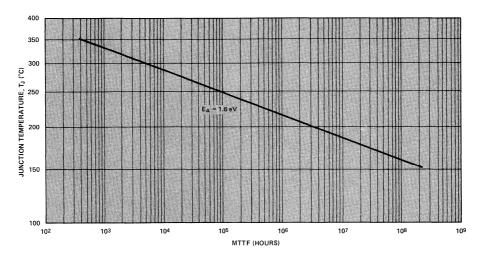
Test	MIL-STD-750	Test Condition	
Temperature Cycling	1051 C	10 cycles from -65° C to 200° C, 5 hrs. at extremes, 5 min. transfer	10
Thermal Shock	1056	10 cycles from 0°C to 100°C, 3 sec. transfer	10
Mechanical Shock	2016	5 blows each at X ₁ , X ₂ , Y, 1500G, 0.5 msec. pulse	10
Vibration Fatigue	2046.1	20G min., 60 Hz	10
Vibration Variable Frequency	2056	4, 4 min. cycles each X, Y, Z at 20G min., 100 to 2000 Hz	10
Constant Acceleration	2006	20KG, 1 minute per axis	5
Moisture Resistance	1021.1	240 hours, 90-98% relative humidity	10
Salt Atmosphere	1041.1	35°C fog for 24 hours	5
Solderability	2026	Sn 60, Pb 40, 230° C	10

Note: 1. 1000 hours minimum on all life tests.


RELIABILITY DATA TRI METAL BEAM LEAD SCHOTTKY DIODES

Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is compiled from reliability tests run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this sheet represents the latest review of accumulated test results. All data recorded here is for tri metal beam lead Schottky diodes mounted in hermetically sealed H packages.


Applications

This information represents the capabilities of the generic device. Failure rate and MTTF values presented here are achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by testing specific lots, under specified conditions and LTPD levels.

Applicable Part Numbers

HSCH-5300 Series	5082-2208	5082-2775
HSCH-5500 Series	5082-2209	5082-2785
5082-2200	5082-2210	5082-2786
5082-2201	5082-2765	5082-2794
5082-2202	5082-2766	5082-2795
5082-2203	5082-2774	5082-2837
5092 2207		

Mean Time to Failure vs. Junction Temperature

Burn-In and Storage

Test	Test Conditions ^[1]	LTPD per 1000 Hours
High Temperature Life	Storage at: 200° C	2.0
Steady State Operating Life	I _F = 10 mA DC T _A = 175°C f = 60 Hz	2.0
High Temperature Reverse Bias	V _R = 80% of V _{BR} T _A = 175° C	2.0

Note

Environmental

Test	MIL-STD-750	MIL-STD-750 Test Condition 1051C 10 cycles from -65° C to 200° C, 5 hrs. at extremes, 5 min. transfer	
Temperature Cycling	1051C		
Thermal Shock	1056	10 cycles from 0° C to 100° C, 3 sec. transfer	6
Mechanical Shock	2016	5 blows each at X ₁ , X ₂ , Y, 1500G, 0.5 msec. pulse	- 6
Vibration Fatigue	2046.1	20G min., 60 Hz	6
Constant Acceleration	2006	20KG, 1 minute per axis	6
Moisture Resistance	1021.1	240 hours, 90-98% relative humidity	6
Salt Atmosphere	1041	35° C fog, 24 hours	10

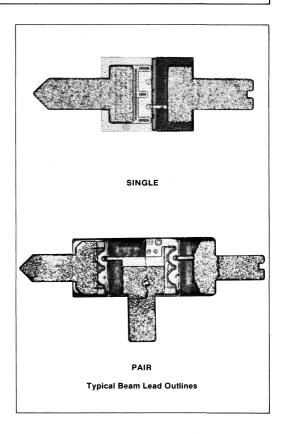
^{1. 1000} hours minimum on all life tests.

RELIABILITY BULLETIN TRI METAL BEAM LEAD SCHOTTKY DIODES

Conclusion

Hewlett-Packard's beam lead diodes have successfully passed stringent environmental testing. Hewlett-Packard beam lead diodes may be used in military and space applications without the necessity of hermetically sealed packaging.

General


For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is compiled from reliability tests run to demonstrate that a product meets the specified design criteria. All Schottky beam lead families have fulfilled the standard requirements of reliability qualification, and the results of these tests are available upon request from Hewlett-Packard.

Program Description

The purpose of this program is to qualify all beam lead diodes for operation in extreme environmental conditions which may be encountered during military and space operations.

The following test sequence has been designed to assess the endurance of beam lead diodes through relevent environmental stresses such as heat and humidity. To qualify a device as hermetic, the conventional procedure is to perform dyepenetrant and Radiflo tests. However, because of the absence of an enclosed cavity in the unique design of the beam lead diode, these tests are not directly applicable. Therefore, this program utilizes reliability tests such as moisture resistance, salt atmosphere, and immersion to verify that the passivation layer on the beam lead acts as a seal to protect the active area of the diode.

To perform these tests, various Schottky diodes were mounted in non-hermetic, open packages and tested as exposed beam lead devices.

Applicable Part Numbers

Schottky Beam Leads

5082-2837 HSCH-5300 Series HSCH-5500 Series

Test Sequence

Test	MIL-STD-750	Test Condition	Units Tested	Falled	LTPD
Moisture Resistance 1, 2	1021	98% R.H10° C to 65° C, 10 days			
Temperature Cycling	1051	-65°C to 200°C, 100 cyc.	80	0	<7
Constant Acceleration	2006	20 KG, 1 min. each axis	(40 per lot)		
Salt Atmospherel ²	1041	35° fog, 24 hours	25	0	<10
Salt Water Immersion ^[2]	(MIL-STD-883B, M1002B)	65° C saturated NaCl solution, 2 cycles	25	0	<10

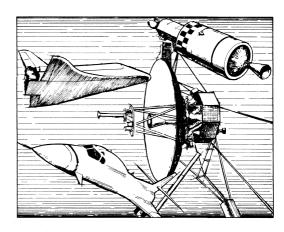
Notes

- The sequence of moisture resistance and temperature cycling followed by constant acceleration assures a thorough evaluation of the effect of exposure to high humidity and heat conditions. End points were taken after each test.
- 2. End points were: Visual at 100X magnification and D.C. testing to MIL-STD-19500.

Results

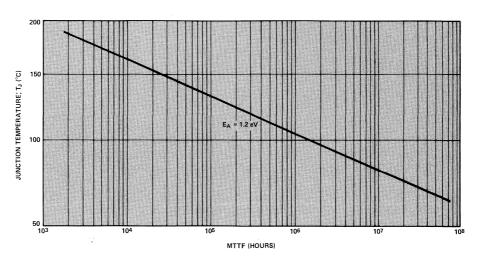
As demonstrated by these tests, Hewlett-Packard's beam lead diodes exhibit superior performance when subjected to severe environmental conditions. This proven reliability is achieveable because of Hewlett-Packard's unique beam lead design. These beam lead diodes are made of tri-metal (Ti-Pt-Au or NiCr-Pt-Au), which extends both the operating and storage temperature range. In addition, a nitride passivation

layer acts as a sealant and provides immunity from contaminants which could lead to ln drift. Conductive particle protection is provided by a layer of polyimide, which also functions as scratch protection. Therefore, it is recommended that Hewlett-Packard beam lead diodes be used in military and space applications without the necessity of hermetically sealed packaging.


RELIABILITY DATA BI METAL BEAM LEAD SCHOTTKY DIODES

Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is compiled from reliability tests run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this sheet represents the latest review of accumulated test results. All data recorded here is for bi metal beam lead Schottky diodes mounted in non-hermetically sealed E-1 packages.


Applications

This information represents the capabilities of the generic device. Failure rate and MTTF values presented here are achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by testing specific lots, under specified conditions and LTPD levels.

Applicable Part Numbers

5082-2231	5082-2277	5082-2294
5082-2233	5082-2279	5082-2830
5082-2263	5082-2280	5082-2831
5082-2271	5082-2291	5082-9300 Series
5082-2272	5082-2292	5082-9600 Series

Mean Time to Failure vs. Junction Temperature

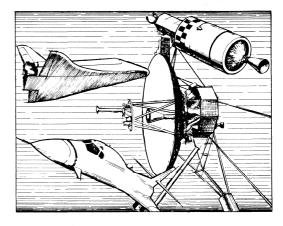
Burn-In and Storage

Test	Test Conditions ^[1]	LTPD per 1000 Hours
High Temperature Life	Storage at 125° C	2.0
Steady State Operating Life	P _{FM} = 50 mW	2.0
	T _A = 25°C f = 60 Hz	

Environmental

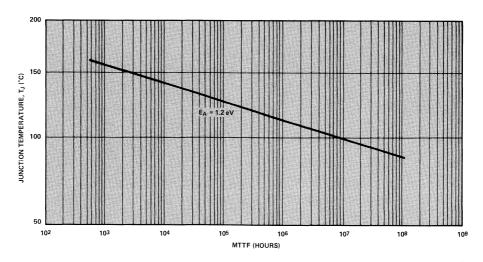
Test	MIL-STD-750	Test Condition	LTPD
Temperature Cycling	1051C	10 cycles from -65° C to 125° C, 5 hrs. at extremes, 5 min. transfer	10
Thermal Shock	1056	10 cycles from 0° C to 100° C, 3 sec. transfer	10
Mechanical Shock	2016	5 blows each at X ₁ , X ₂ , Y, 1500G, 0.5 msec. pulse	10
Vibration Variable Frequency	2056	4, 4 min. cycles each X, Y, Z at 20G min., 100 to 2000 Hz	10
Moisture Resistance	1021.1	240 hours, 90-98% relative humidity	10
Salt Atmosphere	1041.1	35°C fog for 24 hours	10
Solderability	2026	Sn 60, Pb 40, 230° C	10

Note: 1. 1000 hours minimum on all life tests.


RELIABILITY DATA MESH SCHOTTKY DIODES

Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is compiled from reliability tests run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this sheet represents the latest review of accumulated test results. All data recorded here is for mesh Schottky diodes mounted in hermetically sealed glass packages.


Applications

This information represents the capabilities of the generic device. Failure rate and MTTF values presented here are achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by testing specific lots, under specified conditions and LTPD levels.

Applicable Part Numbers

5082-2301	5082-2356	5082-2566
5082-2302	5082-2370	5082-2755
5082-2303	5082-2396	5082-2787
5082-2305	5082-2400	5082-2900
5082-2306	5082-2401	5082-2912
5082-2308	5082-2520	5082-2970
5082-2350	5082-2521	5082-2997
5082-2351	5082-2565	HSCH-3486

Mean Time to Failure vs. Junction Temperature

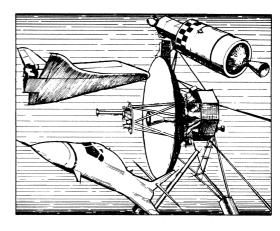
Burn-In and Storage

Test	Test Conditions ^[1]	LTPD per 1000 Hours
High Temperature Life	Storage at 100° C	2.0
Steady State Operating Life	P _{FM} = 125 mW V _{RM} = 80% of V _{BR} T _A = 25°C f = 60 Hz	2.0
High Temperature Reverse Bias	V _R = 80% of V _{BR} T _A = 100° C	3.0

Environmental

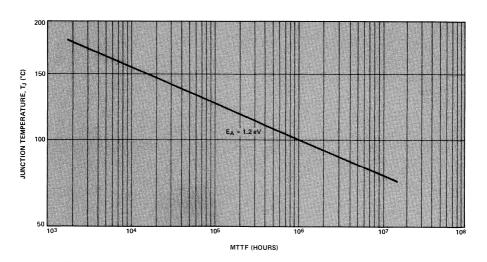
Test	MIL-STD-750	Test Condition	LTPD
Temperature Cycling	1051C	10 cycles from -65° C to 100° C, 5 hrs. at extremes, 5 min. transfer	10
Thermal Shock	1056	10 cycles from 0°C to 100°C, 3 sec. transfer	10
Mechanical Shock	2016	5 blows each at X ₁ , X ₂ , Y, 1500G, 0.5 msec. pulse	10
Vibration Variable Frequency	2056	4, 4 min. cycles each X, Y, Z at 20G min., 100 to 2000 Hz	10
Moisture Resistance	1021.1	240 hours, 90-98% relative humidity	10
Terminal Strength	2036.1	Condition A	10
Solderability	2026	Sn 60, Pb 40, 230° C	10

Note:
1. 1000 hours minimum on all life tests.


RELIABILITY DATA PASSIVATED N-TYPE MICROWAVE SCHOTTKY DIODES

Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is compiled from reliability tests run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this sheet represents the latest review of accumulated test results. All data recorded here is for N-type passivated microwave Schottky diodes mounted in non-hermetic unsealed 44 packages.


Applications

This information represents the capabilities of the generic device. Failure rate and MTTF values presented here are achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by testing specific lots, under specified conditions and LTPD levels.

Applicable Part Numbers

5082-0013	5082-2297	5082-2712
5082-0023	5082-2298	5082-2713
5082-0029	5082-2701	5082-2714
5082-0041	5082-2702	5082-2723
5082-2273	5082-2706	5082-2724
5082-2274	5082-2707	HSCH-3206
5082-2295	5082-2711	HSCH-3207
5082-2296		

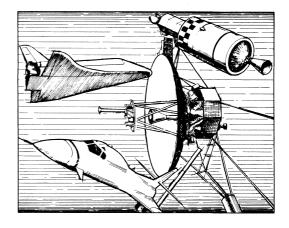
Burn-In and Storage

Test	Test Conditions[1]	LTPD per 1000 Hours
High Temperature Life	Storage at 125° C	3.0
	P _{FM} = 75 mW	
Steady State Operating Life	V _{RM} = 80% of V _{BR}	4.0
	$T_A = 25^{\circ}C$ $f = 60$ Hz	

Environmental

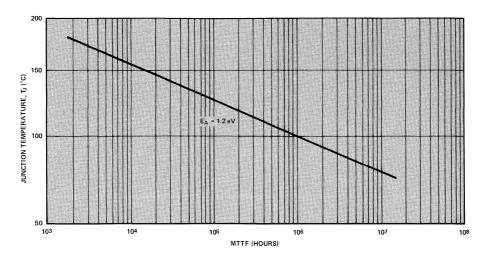
Test	MIL-STD-750	Test Condition	LTPD
Temperature Cycling	1051C	10 cycles from -65°C to 125°C, 5 hrs. at extremes, 5 min. transfer	10
Thermal Shock	1056	10 cycles from 0°C to 100°C, 3 sec. transfer	10
Mechanical Shock	2016	5 blows each at X ₁ , X ₂ , Y, 1500G, 0.5 msec. pulse	10
Vibration Fatigue	2046.1	20G min., 60 Hz	10
Vibration Variable Frequency	2056	4, 4 min. cycles each X, Y, Z at 20G min., 100 to 2000 Hz	10
Constant Acceleration	2006	20KG, 1 minute per axis	10
Moisture Resistance	1021.1	240 hours, 90-98% relative humidity	10
Salt Atmosphere	1041.1	35°C fog for 24 hours	12

Note: 1. 1000 hours minimum on all life tests.


RELIABILITY DATA PASSIVATED P-TYPE MICROWAVE SCHOTTKY DIODES

Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is compiled from reliability tests run to demonstrate that a product meets the design criteria. Periodically, additional tests are run. The data on this sheet represents the latest review of accumulated test results. All data recorded here is for P-type passivated microwave Schottky diodes mounted in non-hermetic unsealed 44 packages.


Applications

This information represents the capabilities of the generic device. Failure rate and MTTF values presented here are achievable with normal MIL-19500 test screening. Reliability can be guaranteed only under specified conditions by testing specific lots, under specified conditions and LTPD levels

Applicable Part Numbers

5082-0009 5082-2750 5082-2751 5082-9891

Mean Time to Failure vs. Junction Temperature

Burn-In and Storage

Test	Test Conditions[1]	LTPD per 1000 Hours
High Temperature Life	Storage at 125° C	4.0
	P _{FM} = 100 mW	
Steady State Operating Life	V _{RM} = 80% of V _{BR}	3.0
professional community of	T _A = 25°C f = 60 Hz	The second second second second

Environmental

Test	MIL-STD-750	Test Condition	LTPD
Temperature Cycling	1051C	10 cycles from -65°C to 200°C, 5 hrs. at extremes, 5 min. transfer	10
Thermal Shock	1056	10 cycles from 0°C to 100°C, 3 sec. transfer	10
Mechanical Shock	2016	5 blows each at X ₁ , X ₂ , Y, 1500G, 0.5 msec. pulse	10
Vibration Fatigue	2046.1	20G min., 60 Hz	10
Vibration Variable Frequency	2056	4, 4 min. cycles each X, Y, Z at 20G min., 100 to 2000 Hz	10
Moisture Resistance	1021.1	240 hours, 90-98% relative humidity	10
Salt Atmosphere	1041.1	35° C fog for 24 hours	_ 12

Note: 1. 1000 hours minimum on all life tests.

ABSTRACTS OF APPLICATION NOTES AND BULLETINS

The Microwave Semiconductor Division field sales force is supported by a division applications staff. These technical specialists investigate circuit applications of most interest to the users of these semiconductor devices. The results of these investigations are reported in application notes or brief application bulletins. A complete list with brief abstracts is presented here.

Below is a brief summary of Application Notes for diodes and transistors. All of the Application Notes are available from your local HP Sales Office or nearest Components Authorized Distributor or Representative.

Schottky Diode Applications

923 Hot Carrier Diode Video Detectors

Describes the characteristics of HP Schottky barrier diodes intended for use in video detector or video receiver circuits, and discusses some design features of such circuits.

Though less sensitive then the heterodyne receiver, the many advantages of the video receiver make it extremely useful. The Schottky diode can be used to advantage in applications such as beacon, missile-guidance, fuse-activating, and counter-measure receivers, and as power-leveling and signal-monitoring detectors.

Among the subjects discussed are the performance characteristics of video detector diodes — tangential sensitivity, video resistance, voltage sensitivity and figure of merit; how these characteristics affect the bandwidth of a video detector, video detector design considerations; considerations that affect dynamic range; and considerations that vary the level at which burnout can occur.

942 Schottky Diodes for High Volume Low-Cost Applications

Discusses switching, sampling, mixing, and other applications where the substitution of Schottky diodes will provide significant improvement over PN junction devices.

956-1 The Criterion for the Tangential Sensitivity Measurement

Discusses the meaning of Tangential Sensitivity and a recommended measurement technique.

956-3 Flicker Noise in Schottky Diodes

Treats the subject of flicker (1/f) noise in Schottky diodes, comparing 4 different types.

956-4 Schottky Diode Voltage Doubler

Explains how Schottky detectors can be combined to achieve higher output voltages than would be produced by a single diode.

956-5 Dynamic Range Extension of Schottky Detectors

Discusses operation of two types of detectors: the small signal type, also known as square-law detectors; and the

large signal type, also known as linear or peak detectors. Techniques for raising the compression level are presented. An example is given illustrating the effect of bias current level on an HP 5082-2751 detector.

956-6 Temperature Dependence of Schottky Detector Voltage Sensitivity

A discussion of the effects that temperature changes have on Schottky barrier diodes. Performance improves at lower temperatures in a predictable manner. Data presented were obtained using HP 5082-2750 detector diodes.

963 Impedance Matching Techniques for Mixers and Detectors

Presents a methodical technique for matching complex loads, such as Schottky diodes, to a transmission line. Direct application to broadband mixers and detectors is illustrated.

969 An Optimum Zero Bias Schottky Detector Diode

Describes the use of HSCH-3486 zero bias detector diodes. Their forward voltage characteristics are detailed, as well as discussion of voltage sensitivity including effects of junction capacitance, load resistance and reflection loss on sensitivity. Temperature characteristic curves for both devices are also included.

976 Broadband Microstrip Mixer Design, The Butterfly Mixer

A microstrip mixer on RT/duroid substrate is designed for the frequency range 8 GHz to 12 GHz. Hewlett-Packard Schottky barrier diode model 5082-2207 is used. Low impedance shunt transmission lines are difficult to realize and present a problem in this type of circuit. Radial line stubs are used to avoid this problem.

986 Square Law and Linear Detection

Frequency, diode capacitance, breakdown voltage, and load resistance all have an effect on the slope of a microwave detector. At high input levels the linearity may be controlled by proper tuning.

Bias current is often necessary to reduce the impedance of detector diodes to a reasonable level. However, when the

signal level is high, rectified current may reduce the impedance without the need for bias current. Measurements with the 5082-2755 diode are used to illustrate this effect.

988 All Schottky Diodes are Zero Bias Detectors

Diodes which are normally biased make excellent detectors when the bias is eliminated. It is necessary to use a load with an impedance comparable to the diode impedance. This is shown with a 5082-2755 diode used with a 3469B multimeter as the load.

Hybrid Integrated Circuits Applications

974 Die Attach and Bonding Techniques for Diodes and Transistors

Several package styles are available for use with hybrid integrated circuits. This application note gives detailed instructions for attaching and bonding these devices. A brief description of an impedance matching technique for mixer diodes is also included.

979 The Handling and Bonding of Beam Lead Devices Made Easy

Beam Lead devices are particularly attractive for hybrid circuits because of their low parasitics and small size. The availability of equipment and techniques specifically designed for their small size has facilitated the handling and bonding of these devices. This application note describes some of this equipment and techniques, and outlines suggestions for the proper handling and bonding of Beam Lead devices.

991 Harmonic Mixing with the HSCH-5530 Series Dual Diode

The dual diode on coplanar waveguide forms an antiparallel pair. This arrangement is excellent for mixers with subharmonic local oscillators. A mixer for 34 GHz was designed and built. Conversion loss was measured as a function of frequency and local oscillator power level.

This application bulletin gives a general description of various methods of attaching beam lead components to both hard and soft substrates. A table summarizes the most common attachment methods with advantages, disadvantages, and equipment costs.

993 Beam Lead Diode Bonding to Soft Substrate

The hard gold surface on standard pc boards with soft substrate material makes it almost impossible to successfully bond beam lead diodes onto the boards with normally recommended thermocompression bonding. Described in this application note is a new method of resistive spot welding or modified gap welding, which uses a single electrode to weld the beam while the conductor is contacted separately. This method allows tight pressure to be used on the weld probe, resulting in an effective bond without damaging the beam lead device.

Schottky Diodes

AB 5 Current Source for Diode Testing

This application bulletin describes a constant current source designed primarily for the ease of use in laboratory measurements. Easily programmable by thumb wheel switching in 10 μ A steps from 10 μ A to 700 mA, its accuracy exceeds most commercially available current sources.

AB 7 Mixer Distortion Measurements

Describes the measurement of distortion in a balanced mixer by the two tone method.

AB 13 Transistor Speed Up Using Schottky Diodes

Significant reduction in transistor switching delay time can be achieved by adding a Schottky diode and a PIN diode to the transistor switching circuit. This improvement in switching performance also extends the oscillator capability of the transistor to higher frequencies.

AB 14 Waveform Clipping with Schottky Diodes

Consideration is given in this application bulletin to the design requirements of clipping circuits which are used to limit the transmission of signals above or below specified levels. The characteristics of Schottky diodes needed to achieve the required performance in these circuits are discussed and recommendations made.

AB 15 Waveform Clamping with Schottky Diodes

Discussed in this application bulletin are the circuit design and diode performance requirements for a clamping circuit, which is used as a DC restorer or level shifter. Schottky diodes having the required characteristics for this type of circuit are recommended.

AB 16 Waveform Sampling with Schottky Diodes

This application bulletin discusses the design considerations for a sampling circuit used to sample high frequency repetitive signals and reproduce them at lower frequencies for ease of monitoring. Schottky diode performance requirements important in the realization of a sampling circuit are considered.

AB 26 Using the HSCH-1001 Schottky Diode for Interfacing in Microprocessor Controlled A/D Conversion Circuits

The use of custom codec (coder/decoder) IC chips simplifies the analog to digital circuitry in microprocessor controlled digital switching circuits. This application bulletin describes the use of the HSCH-1001 Schottky diode to achieve the required compatible interface between the codec chip and the rest of the circuit in order to realize optimum circuit performance.

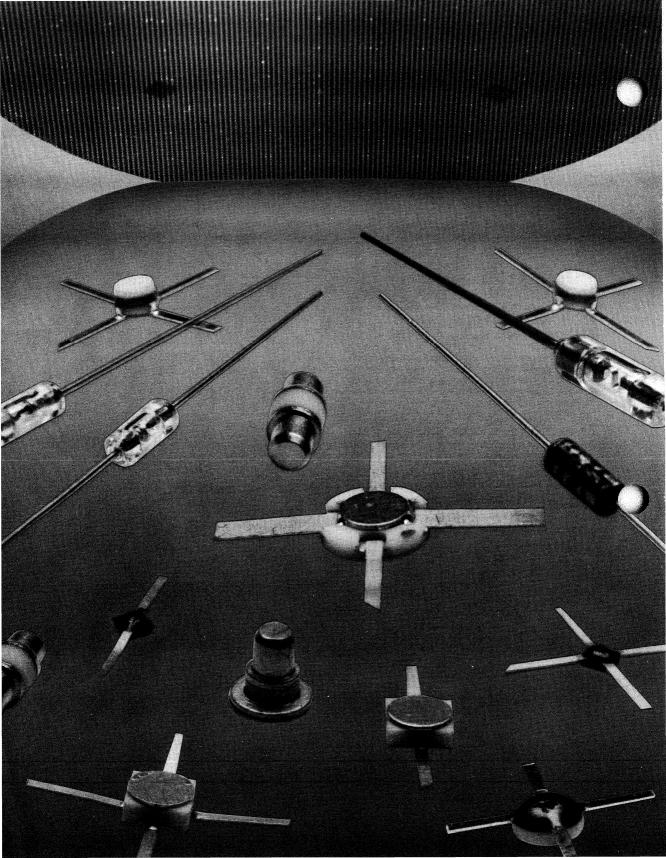
AB 27 Using the HSCH-1001 Schottky Diode in an AGC Detector Circuit

A detector circuit such as one used for AGC or video detection simply realized with the use of the HSCH-1001 Schottky diode is described in this application bulletin.

AB 28 Optocoupler Speedup using the HSCH-1001 Schottky Diode

An optocoupler typically contains a transistor in the output circuit. When the optocoupler is turned on, the transistor is usually in the saturated state, which means the turn-off time will be unnecessarily long. This application bulletin describes how the HSCH-1001 Schottky diode can be used to alleviate the saturation effects on the transistor and thus improve switching time.

AB 30 Using the 5082-2835 Schottky Diode for Protecting and Improving the Performance of an Operational Amplifier


High level voltage spikes degrade the performance of an operational amplifier, and, in extreme cases, destroy the amplifier permanently. This application bulletin describes how the 5082-2835 Schottky diode can be used to protect an operational amplifier against high level voltage overload, and also to improve output response.

AB 31 Using the HSCH-1001 Schottky Diode in a Data Terminal Memory

The simplicity in a read only memory (ROM) circuit allows the circuit to be large in terms of storage capacity. A large capacity requires a large matrix of active devices. The use of HSCH-1001 Schottky diodes in a ROM circuit can ease the power drain because of their low forward voltage. The use of discrete circuit elements offers ease of repair and modification. These and other important considerations are discussed in this application bulletin.

AB 36 Using the HSCH-1001 Schottky Diode in a Digital Logic Gate

Simple "and" and "or" gates consisting of diodes and resistors can be combined into circuits which will perform increasingly complex functions. The achievement of low loss when the diode is biased on and of high isolation when the diode is biased off are the principal characteristics of these types of logic gates. This application bulletin describes how the HSCH-1001 Schottky diode is particularly suited for this type of application because of its low forward voltage and other inherent characteristics.

PIN and High Conductance Diodes

	Characteristics		214
	Applications		216
	Selection Guide		218
	Alphanumeric Index		219
	Chips		220
	Beam Leads		222
	Bonding and Handling I	Procedures for	
	Beam Lead Diodes .		228
	Packaged Devices		229
	High Reliability Data .		251
	Reliability Data		275
	Abstracts of Application	Notes	
-	and Bulletins		an a second

CHARACTERISTICS OF PIN DIODES

The most important feature of the PIN diode is its basic property of being an almost pure resistor at RF frequencies, whose resistance value can be varied from approximately 10,000 ohms to less than 1 ohm by the control current flowing through it. Most diodes exhibit this characteristic to some degree, but the PIN diode is optimized in design to achieve a relatively wide resistance range, good linearity, low distortion, and low current drive. The characteristics of the PIN diode make it suitable for use in switches, attenuators, modulators, limiters, phase shifters, and other signal control circuits.

Device Characteristics

The principal parameters of a PIN diode which play major roles in determining the performance of a circuit include the following:

RF Resistance

The PIN diode structure consists of an I (Intrinsic) layer of very high resistivity material sandwiched between regions of highly doped P (positively charged) material and N (negatively charged) material. With reverse or zero bias, the I-layer is depleted of charges and the PIN diode exhibits very high resistance. When forward bias is applied across the PIN diode, positive charge from the P region and negative charge from the N region are injected into the I-layer, therefore increasing its conductivity and lowering its resistance. The high off resistance and low on resistance make the PIN diode attractive for switching applications.

At RF frequencies, the PIN diode with forward bias behaves essentially as a pure resistor. The resistance of the PIN diode is related to the bias current, the geometry of the I-layer and the properties of the carriers. For a given type of PIN diode with uniform characteristics, resistance is inversely proportional to the forward bias current. Whereas, only high off resistance and low on resistance are important in switching applications, the resistance characteristics in the entire dynamic range are of concern in attenuator applications. Linearity of resistance with bias makes the PIN diode useful for attenuator applications.

Carrier Lifetime

An important parameter of the PIN diode is the carrier lifetime, τ , which is useful for defining the low frequency limit, $f_0 = \frac{1}{2\pi\tau}$, for linear performance of the diode. For RF signal frequencies below f_0 , the PIN diode rectifies the signal much like an ordinary PN junction diode, and considerable output distortion results. (See Application Note 957-3 for additional discussion on rectification causes and effects). At frequencies above f_0 , less rectification occurs with increasing frequency, allowing the PIN diode to appear more linear, approaching a pure resistor.

For applications requiring good linearity and low distortion the minimum signal frequency should be ten times f_0 , i.e., $f_{min} = \frac{10}{2\pi r^i} = \frac{1.6}{\tau}$. This restriction is not important in switching applications, where the diode is normally biased either completely off or on. In those states, since most of the power is either reflected or transmitted, the effect of RF current on the total charge is small and distortion is not a problem.

Capacitance

Diode capacitance limits switch and attenuator performance at high frequencies in the form of isolation rolloff and increased insertion loss. Optimum performance can be achieved by one of several alternatives available. Using a low capacitance diode would be one solution. Since the junction capacitance of a PIN diode is related to the geometry and electrical properties of the I-layer similar to the case of RF resistance, an R-C trade-off may be feasible. Special techniques can be employed to minimize capacitive (and other parasitic) effects, and in some cases even to take advantage of them. (Some of the techniques for improving high frequency performance are discussed in Application Notes 922 and 957-2.)

Reverse Recovery Time

Reverse recovery time is a measure of switching time, and is dependent on the forward and

reverse bias applied. With forward bias current, charge is stored in the I-layer. When a reverse pulse is applied, reverse current will flow for a short period of time, known as delay time, t_d . When a sufficient number of carriers have been removed, the current begins to decrease. The time required for the reverse current to decrease from 90% to 10% is called the transition time, t_t . The sum, $t_d + t_t$, is the reverse recovery time, which is a measure of the time it takes to switch the diode from on to off.

Reverse Breakdown Voltage

The reverse breakdown voltage defines the recommended maximum signal level for safe operation of the diode. Operation at signal levels above the reverse breakdown voltage may result in degradation of diode characteristics or in permanent damage to the diode.

APPLICATIONS OF PIN DIODES

PIN diodes are used principally for the control of RF and microwave signals. Applications include switching, attenuating, modulating, limiting and phase shifting. Certain diode requirements are common to all these control functions, while others are more important in a particular type of usage.

Switching Applications

The performance of a PIN diode circuit is directly related to the basic characteristics of the diode. As an illustrative example, the performance of a PIN diode switch can be simply approximated by treating the PIN diode essentially as a resistor in the forward biased state and a capacitor in the reverse biased state. Switch performance can then be analyzed as follows:

Insertion Loss

The loss of signal attributed to the diode when the switch is on (transmission state) is insertion loss. For low insertion loss, low resistance is needed in a series switch (Figure 1). Low capacitance (particularly at high frequencies) is needed in a shunt switch (Figure 2).

Isolation

Isolation is the measure of RF leakage between the input and output when the switch is off. For high isolation (low transmission) low capacitance is required in a series switch especially at high frequencies (Figure 3). Low resistance is required in a shunt switch (Figure 4).

Switching Speed

In many applications, switching time is very important. Reverse recovery time is a measure of the switching time of a PIN diode, the time required to switch the diode from ON to OFF. The time needed to switch the diode from OFF to ON is shorter. (See Application Note 929 for details).

Power Handling Capability

The RF power (CW or pulse) that can be handled safely by a diode switch is limited by two factors — the breakdown voltage of the diode, and thermal considerations, which involve the maximum junction temperature and the thermal resistance of the diode and packaging. Other factors affecting power handling capability are ambient temperatures, frequency, attenuation level (which is related to diode resistance), pulse width and duty cycle. (See Application Note 922 for details).

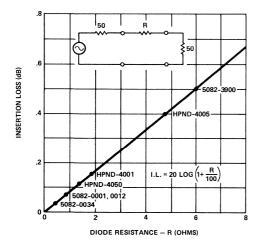


Figure 1. Typical Insertion Loss of Series Diode Switch.

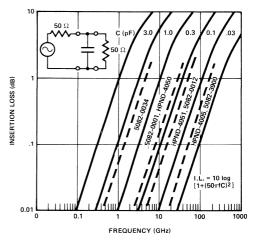


Figure 2. Typical Insertion Loss of Shunt Diode Switch.

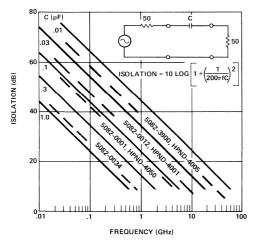


Figure 3. Typical Isolation of Series Diode Switch.

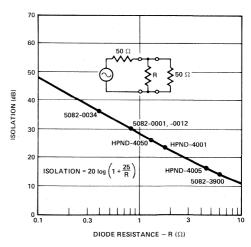


Figure 4. Typical Isolation of Shunt Diode Switch.

Attenuators

Whereas a switch is used only in its maxium ON or OFF state, an attenuator is operated throughout its dynamic range (or resistance range in the case of a diode attenuator). Although a single diode series or shunt switch can be used as an attenuator, it cannot offer in its entire dynamic range constant input and output impedance, which is required for optimum source and load matching in most attenuator applications. By using a multiple diode circuit such as a π , T, or bridged-T attenuator, constant input and output impedance can be achieved throughout the attenuation range.

An additional requirement in most attenuator applications is low distortion. Distortion can be kept at a minimum, if the carrier lifetime of the PIN diode used is greater than the inverse of the signal frequency, preferrably $\tau > \frac{1.6}{f}$, where τ is the carrier lifetime and f is the signal frequency.

Limiters

Sensitive amplifiers, mixers, and detectors in microwave systems can be protected against damage by high level signals with the use of a PIN diode limiter shunting the transmission line.

A PIN diode limiter is essentially an attenuator that uses self bias rather than externally applied bias. As the RF input increases, the rectified current generated by the PIN diode (in some limiter circuits by an auxiliary Schottky diode) biases the diode to a low resistance state. Most of the input power is then attenuated, allowing very little to be transmitted. The sensitive equipment that follows is thus protected.

For a limiter circuit to be efficient, it is essential that the PIN diode has fast switching time. Without an auxiliary diode, a PIN diode with good rectification efficiency is needed to achieve low resistance. Another diode requirement is good heat transfer characteristics (low thermal resistance).

Phase Shifters

The high speed switching capabilities and low ON and high OFF resistance states of the PIN diode make it also very useful for many types of high speed, current controlled phase shifter applications. Another important requirement for these applications is the uniformity of diode characteristics such as capacitance and resistance particularly in systems where a large number of elements are involved.

PIN DIODE SELECTION GUIDE

Hewlett-Packard PIN diodes are available in chip form and several types of packages, which lend themselves more suitable for particular applications. Packaged devices containing the generic chips are listed in the Selection Guide in the order of increasing junction capacitance. For switching, attenuating, and other general purpose applications particularly in the VHF/UHF range, the low cost glass package (Outline 15) is suitable. Due to their low parasitics, ceramic packages (Outlines 31 and 38) are suited for broadband circuits up to 1

GHz and for resonated narrowband circuits up to 8 GHz. In addition, they have medium power handling capability.

Stripline packages (Outlines 60 and 61), containing built-in low pass matching circuits, can be used in broadband designs up to 18 GHz. Because of good heat sinking, they can handle high power in switching, attenuating and limiting applications. The beam lead packages with low parasitics are designed for use in stripline or microstrip circuits using welding or thermo-compression bonding techniques.

(Devices listed in the order of increasing junction capacitance) All part numbers, 5082- (except HPND- as noted)

Maximum Junction	Typical RF		Packaged Devices Containing Similar Chips (Package Outline)							
Capacitance C _{JVR} (pF) (Note 1)	Resistance R _s (Ω) (Note 3)	Chip	Beam Lead	Glass (15)	Сеі (31)	ramic (38)	(60)	ripline (61)		
0.02***	4.7††		HPND- 4005							
0.025****	6.0†		3900							
0.08*	1.8†††		HPND- 4001							
0.12	0.8	0012		3001 3002 3039 3077 1N5719 HPND- 4165 HPND- 4166	3201 3202	3101 3102	3140	3040		
0.12	0.8	0030			3303 3304		3170	3340		
0.15	0.6	0047								
0.15**	1.3†††		HPND- 4050		-					
0.16**	0.8††	0001		3042 3043	3306	3305	3141	3041 3071		
0.20	1.5	0025		3080 3379 1N5767						
0.20	2.0	0039		3081						
0.20	0.6	0049						3046		
1.2**	0.4†††	0034		3168 3188						
Package Capacitance (pF)			(Note 2)	.13	.2	.2	.03	.03		
Pages										

Notes:

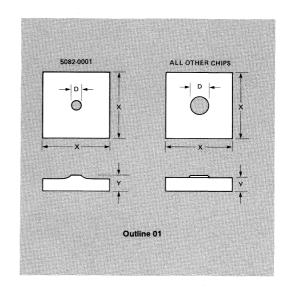
- 1. All capacitance measured with $V_R = 50$ volts, except: $^*V_R = 30$ volts $^{***}V_R = 10$ volts $^{***}V_R = 20$ volt $^{****}V_R = 0$ volt
- 2. Capacitance of beam lead devices includes package capacitance.
- 3. RF resistance measured with I_F = 100 mA, except: $\dagger I_F$ = 50 mA $\dagger \dagger I_F$ = 20 mA $\dagger \dagger \dagger I_F$ = 10 mA

PIN DIODE ALPHANUMERIC INDEX

		Page Number					
Part No.	Description	Commercial Data Sheet	Standard Hi-Rel Data Sheet	Reliability Data Sheet			
HPND-4001 HPND-4005 HPND-4050 HPND-4165 HPND-4166	Beam Lead PIN Diode Beam Lead PIN Diode Beam Lead PIN Diode RF PIN Diode RF PIN Diode	222 224 222 229 229	252 254 252	276 276, 278 276 282 282			
JAN 1N5719 JANTX 1N5719 TXVB-3001 TXVB-3002 TXVB-3039	MIL-S-19500/443 PIN Diode MIL-S-19500/443 PIN Diode HI-Rel 5082-3001 HI-Rel 5082-3002 HI-Rel 5082-3039		256 256 260 260 260				
TXVB-3042 TXVB-3043 TXVB-3077 TXVB-3080 TXVB-3141	Hi-Rel 5082-3042 Hi-Rel 5082-3043 Hi-Rel 5082-3077 Hi-Rel 5082-3080 Hi-Rel 5082-3141		263 263 260 266 272	·			
TXVB-3168 TXVB-3188 TXVB-4001 TXVB-4005 TXVB-4050	Hi-Rel 5082-3168 Hi-Rel 5082-3188 Hi-Rel 5082-4001 Hi-Rel 5082-4005 Hi-Rel 5082-4050		269 269 252 254 252				
1N5719 1N5767 5082-0001 5082-0012 5082-0025	PIN Diode (5082-3039) PIN Diode (5082-3080) High Speed Switch PIN Chip PIN Switching Diode Chip AGC PIN Chip	229 229 220 220 220		282 280			
5082-0030 5082-0034 5082-0039 5082-0047 5082-0049	PIN Switching Diode Chip VHF/UHF Switching PIN Chip AGC PIN Chip PIN Switching Diode Chip Medium Power Switch PIN Chip	220 220 220 220 220 220					
5082-1001 5082-1002 5082-1006 5082-3001 5082-3002	High Conductance Diode (1N4456) High Conductance Diode High Conductance Diode RF PIN Diode RF PIN Diode	248 248 248 229 229	260 260	282 282			
5082-3039 5082-3040 5082-3041 5082-3042 5082-3043	RF PIN Diode Stripline PIN Diode Stripline PIN Diode RF PIN Diode RF PIN Diode	229 235 235 229 229	260 263 263	282			
5082-3046 5082-3071 5082-3077 5082-3080 5082-3081	Stripline PIN Diode Microwave Limiter PIN Diode VHF/UHF PIN Switching Diode HF/VHF/UHF Current Controlled Resistor HF/VHF/UHF Current Controlled Resistor	235 233 229 229 229	260 266	282 280			
5082-3101 5082-3102 5082-3140 5082-3141 5082-3168	RF Pin Diode RF Pin Diode Hermetic Stripline PIN Diode Hermetic Stripline PIN Diode VHF/UHF Switching PIN Diode	246 246 240 240 229	272 269	280			
5082-3170 5082-3188 5082-3201 5082-3202 5082-3303	Hermetic Stripline PIN Diode VHF/UHF Switching PIN Diode RF PIN Diode RF PIN Diode RF PIN Diode	240 229 246 246 246	269	280			
5082-3304 5082-3305 5082-3306 5082-3340 5082-3379	RF PIN Diode High Speed Switch PIN Diode High Speed Switch PIN Diode Stripline PIN Diode VHF/UHF Attenuator PIN Diode	246 244 244 235 229					
5082-3900	PIN Diode Beam Lead	226					

PIN DIODE CHIPS FOR HYBRID MIC SWITCHES/ATTENUATORS

5082-0001 5082-0012 5082-0025 5082-0030 5082-0034 5082-0039 5082-0047 5082-0049


Features

WIDE RANGE OF CAPACITANCE 0.12 pF to 1.2 pF Maximum

LOW SERIES RESISTANCE 0.4 Ω Typical

OXIDE PASSIVATED

WIDE RANGE OF BREAKDOWN VOLTAGE 35 V to 300 V Minimum

Description

These PIN diode chips are silicon dioxide passivated of mesa (5082-0001), pitted planar (5082-0012, -0030), and planar (5082-0047, -0034, -0025, -0039, -0049) construction. The fabrication processes are optimized for long term reliability and tightly controlled for uniformity in electrical performance.

	HP Part Number 5082-									
Dimension	0012 0047	0030	0034	0025	0039	0049	0001			
D	0.13 (5)			0.23 (9)	0. (9		0.06 (2.5)			
Χ			0.51 (20)			0.38 (15)				
Y	0.09		0.13 (5)			0.08 (3.2)	0.11 (4.5)			
Top Contact	Αυ, Cathode	Au. Anode	Ag, Anode	Ag. Cathode		Au. Anode				
Bottom Contact	Au, Anode		u. node	400	Au. Cathode					

Dimensions in millimeters (1/1000 inch)

Maximum Ratings

Junction Operating and Storage
Temperature Range65° C to +150° C
Soldering Temperature
5082-0012, -0025, -0030, -0034, -0039,
-0047, -0049 +425° C for one minute maximum
5092-0001 +300° C for one minute maximum

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷ hours.

Applications

These general purpose PIN diodes are intended for low power switching applications such as duplexers, antenna switching matrices, digital phase shifters, time multiplex filters, TR switches, pulse and amplitude modulators, limiters; leveling circuits, and attenuators.

The 5082-0034 is ideally suited for hybrid VHF/UHF bandswitching.

The 5082-0001 is optimized for applications requiring fast switching.

Electrical Specifications at $T_A = 25^{\circ}C$

Typical Parameters

Chip Part Number 5082-	Nearest Equivalent Packaged Part No. 5082-	Minimum Breakdown Voltage V _{BR} (V)	Maximum Junction Capacitance C _j (pF)	Typical Series Resistance R _S (Ω)	Typical Lifetime τ (ns)	Typical Reverse Recovery Time, t _{rr} (ns)
0012	3001	150	0.12	0.8	400	100
0030	3301	150	0.12	0.8	400	100
0047	3001	150	0.15	0.6	-400	100
0001*	3041	70	0.16*	0.8*	15	5
0025	3080	100	0.20	1,5	1300	1000
0039	3081	100	0.20	2.0	2000	1000
0049	3046	300	0.20	0.6	1000	200
0034	3168	35	1.2*	0.4**	40	12
[1*,2]		V _R = V _{BR} Measure I _R ≤ 10 μA	V _R = 50V *V _R = 20V f = 1 MHz 3	I _F = 100 mA *I _F = 20 mA **I _F = 10 mA f = 100 MHz	I _F = 50 mA I _R = 250 mA	I _F = 20 mA V _R = 10V

- 1. Use standard thermocompression bonding techniques. Ultrasonic bonding is not recommended.
- Either ultrasonic or thermocompression bonding techniques can be employed.
 Total capacitance C_T = C_j + C_p, where C_j is the junction capacitance under reverse bias and C_p is the package parasitic capacitance.

LOW LOSS BEAM LEAD PIN DIODES

HPND - 4001 HPND - 4050

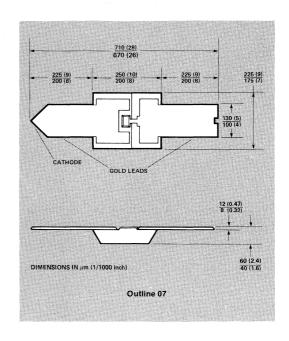
Features

LOW SERIES RESISTANCE 1.3 Ω Typical

LOW CAPACITANCE 0.07 pF Typical

FAST SWITCHING 2 ns Typical

RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull


Description

The HPND-4001 and -4050 are beam lead PIN diodes designed specifically for low capacitance, low series resistance and rugged construction. The new HP mesa process allows the fabrication of beam lead PINs with a very low RC product. A nitride passivation layer provides immunity from contaminants which would otherwise lead to I_R drift. A deposited glass layer (glassivated) provides scratch protection.

Maximum Ratings

Operating Temperature65°C to +175°C						
Storage Temperature $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$						
Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10 ⁷ hours.						
Power Dissipation at T _{CASE} = 25°C 250 mW						
(Derate linearly to zero at 175°C)						

Minimum Lead Strength 4 grams pull on either lead

Applications

The HPND-4001 and -4050 beam lead PIN diodes are designed for use in stripline or microstrip circuits. Applications include switching, attenuating, phase shifting and modulating at microwave frequencies. The low capacitance and low series resistance at low current make these devices ideal for applications in the shunt configuration.

Bonding and Handling Procedures

See page 228.

Electrical Specifications at $T_A=25^{\circ}C$

Part Number	Voll	eakdown Serie Voltage Resista VBR (V) RS (1		tance Capacitance		Minority Carrier Lifetime τ (ns)	Reverse Recovery Time t _{rr} (ns)	
	Min.	Typ.	Тур.	Max.	Typ.	Max.	Тур.	Тур.
HPND-4001	50	80	1.8	2.2	0.07*	0.08*	30	3
HPND-4050	30	40	1.3	1.7	0.12	0.15	25	2
Test Conditions	Mea	VBR sure 10 μΑ	I _F = 10 mA f = 100 MHz		$V_R = 10 \text{ V}$ $V_R = 30 \text{ V}$ $f = 1 \text{ MHz}$		I _F = 10 mA I _R = 6 mA	IF = 10 mA VR = 10V

Typical Parameters

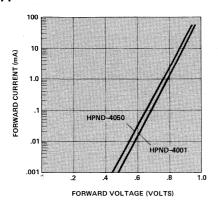


Figure 1. Typical Forward Characteristics.

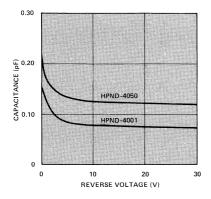


Figure 3. Typical Capacitance vs. Reverse Voltage.

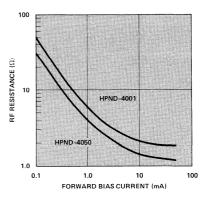


Figure 2. Typical RF Resistance vs. Forward Bias Current.

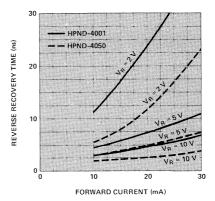


Figure 4. Typical Reverse Recovery Time vs. Forward Current (Shunt Configuration)

BEAM LEAD PIN DIODE

HPND-4005

Features

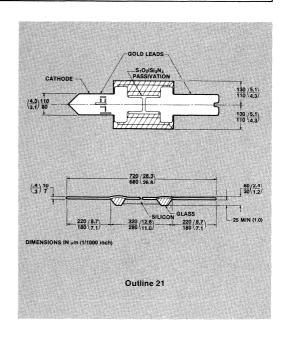
HIGH BREAKDOWN VOLTAGE 120V Typical

LOW CAPACITANCE 0.017 pF Typical

LOW RESISTANCE 4.7Ω Typical

RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull

NITRIDE PASSIVATED


Description

The HPND-4005 planar beam lead PIN diode is constructed to offer exceptional lead strength while achieving excellent electrical performance at high frequencies. High beam strength offers users superior assembly yield, while extremely low capacitance allows high isolation to be realized.

Nitride passivation and polyimide glassivation provide reliable device protection.

Maximum Ratings

Operating Temperature					
Storage Temperature 65°C to + 200°C					
Operation of these devices within the above temperature ratings will assure a device					
Median Time To Failure (MTTF) of approximately 1 x 10 ⁷ hours.					
Power Dissipation at T _{CASE} = 25°C 250 mW					
(Derate linearly to zero at 175° C)					
Minimum Lead Strength 4 grams pull on either lead					
Diode Mounting Temperature					
maximum					

Applications

The HPND-4005 beam lead PIN diode is designed for use in stripline or microstrip circuits. Applications include switching, attenuating, phase shifting, limiting and modulating at microwave frequencies. The extremely low capacitance of the HPND-4005 makes it ideal for circuits requiring high isolation in a series diode configuration.

Bonding and Handling Procedures

See page 228.

Electrical Specifications at T_A = 25°C

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Breakdown Voltage	V _{BR}	100	120	-	٧	I _R = 10 μA
Series Resistance	R _S	-	4.7	6.5	Ohm	I _F = 20 mA, f = 100 MHz
Capacitance	Ст	_	.017	.02	pF	V _H = 10V, f = 10 GHz
Minority Carrier Lifetime	7	-	100	150	ns	I _F = 10 mA I _R = 6 mA
Reverse Recovery Time	t _{rr}		20	35	ns	I _F = 20 mA V _R = 10 V 90% Recovery

^{*}Total capacitance calculated from measured isolation value in a series configuration.

Typical Parameters

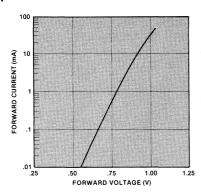


Figure 1. Typical Forward Conduction Characteristics.

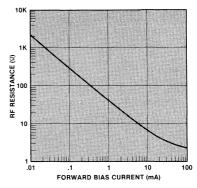


Figure 2. Typical RF Resistance vs. Forward Bias Current.

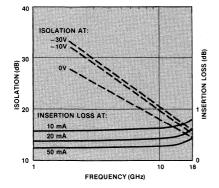


Figure 3. Typical Isolation and Insertion Loss in the Series Configuration (Z $_{O}=50\Omega).$

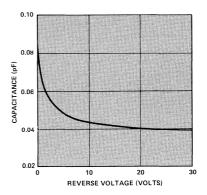


Figure 4. Typical Capacitance at 1 MHz vs. Reverse Bias.

BEAM LEAD PIN DIODE

5082-3900

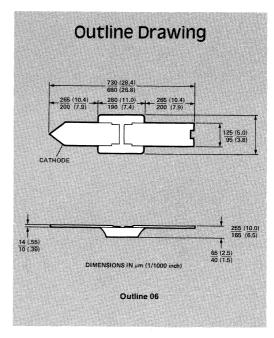
Features

HIGH BREAKDOWN VOLTAGE 200 V Minimum

LOW CAPACITANCE 0.02 pF Typical

RUGGED CONSTRUCTION 2 grams Minimum Lead Pull

NITRIDE PASSIVATED


Description

The 5082-3900 planar beam lead PIN diode offers low capacitance to allow high isolation at RF and Microwave frequencies. Nitride passivation and rugged construction insures reliable performance and assembly yields.

Maximum Ratings

Operating remperature60°C	to + 150° C
Storage Temperature60° C	to +150° C
Power Dissipation at T _{CASE} = 25° C	. 250 mW
(Derate linearly to zero	at 150°C)
Minimum Lead Strength 2 grams pull on	either lead
Diode Mounting Temperature 220° C for 10	sec. max.

Operation of these devices within the above temperature ratings will assure a device Median Time to Failure (MTTF) of approximately 1 x 10⁷ hours.

Applications

The HP 5082-3900 Beam Lead PIN diode is designed for use in stripline or microstrip circuits using welding, thermocompression or ultrasonic bonding techniques. PIN applications include switching, attenuating, phase shifting, limiting and modulating at microwave frequencies.

Bonding and Handling Procedures

See page 228.

Electrical Specifications at $T_{\mbox{\scriptsize A}}=25^{\circ}\mbox{\scriptsize C}$

Parameter	Symbol	Min.	Тур.	Max.	Units	Conditions
Breakdown Voltage	VBR	150	200		V	$I_r = 10 \mu A$
Series Resistance	Rs		6	8	ohm	I _f = 50 mA, f = 100 MHz
Capacitance	Co	_	0.02	0.025	pF	V = 0 V, f = 3 GHz
Minority Carrier Lifetime	т	-	150	_	ns	I _f = 50 mA, I _r = 250 MHz

Typical Parameters

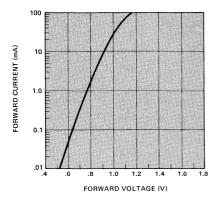


Figure 1. Typical Forward Conduction Characteristics.

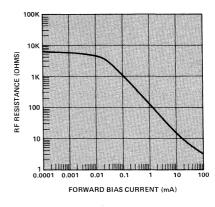


Figure 2. Typical RF Resistance vs. DC Bias Current.

BONDING AND HANDLING PROCEDURES FOR BEAM LEAD DIODES

1. Storage

Under normal circumstances, storage of beam leads in HP supplied waffle/gel packs is sufficient. In particularly dusty or chemically hazardous environments, storage in an inert atmosphere desicator is advised.

2. Handling

In order to avoid damage to beam lead devices, particular care must be exercised during inspection, testing, and assembly. Although the beam lead diode is designed to have exceptional lead strength, its small size and delicate nature requires special handling techniques be observed so that the device will not be mechanically or electrically damaged. A vacuum pickup is recommended for picking up beam lead devices, particularly larger ones e.g., quads. Care must be exercised to assure that the vacuum opening of the needle is sufficiently small to avoid passage of the device through the opening. A #27 tip is recommended for picking up single beam lead devices. A 20X magnification is needed for precise positioning of the tip on the device. Where a vacuum pickup is not used, a sharpened wooden Q-tip dipped in isopropyl alcohol is very commonly used to handle beam lead devices.

3. Cleaning

For organic contamination use a warm (<75° C) rinse of trichloroethane followed by a cold rinse in acetone and methanol. Dry under infrared heat lamp for 5-10 minutes on clean filter paper. Freon degreaser may replace trichloroethane for light organic contamination.

- · Ultrasonic cleaning is not recommended
- · Acid solvents should not be used

4. Bonding

Thermocompression: See Application Note 979 "The Handling and Bonding of Beam Lead Devices Made Easy". This method is good for hard substrates only.

Wobble: This method picks up the device, places it on the substrate and forms a thermocompression bond all in one operation. This is described in MIL-STD-883B Method 2017 and is intended for hard substrates only. Equipment specifically designed for beam lead wobble bonding is available from KULICKE and SOFFA in Hursham, PA.

Ultrasonic: Not recommended.

Resistance Welding or Parallel Gap Welding: To make welding quads easier, attach one electrode of the welder to the substrate and use the second electrode for welding in lieu of the parallel gap electrode. To make welding on soft substrates easier a low pressure welding head is recommended. Suitable equipment is available from HUGHES, Industrial Products Division in Carlsbad, CA.

Epoxy: With solvent free, low resistivity epoxies (available from ABLESTIK in Gardena, CA, MICON in Lexington, MA, and many others) and improvements in dispensing equipment, the quality of epoxy bonds is sufficient for many applications. Equipment is available from ADVANCED SEMICONDUCTOR MATERIALS AMERICA, INC. Assembly Products Group in Chandler, AZ (Automatic), and West Bond in Orange, CA (Manual).

Reflow: By preparing the substrate with tin or solder plating, reflow soldering can be suitably preformed using a modified wire bonder. The probe is used as a soldering tip. WEST BOND or UNITEK bonders make suitable bonds.

PIN DIODES FOR RF SWITCHING AND ATTENUATING

1N5719 *
1N5767 *
5082-3001/02
5082-3039 *
5082-3042/43
5082-3077 *
5082-3080 *
5082-3080 *
5082-3168/88 *
5082-3379
HPND-4165/66

Features

LOW HARMONIC DISTORTION

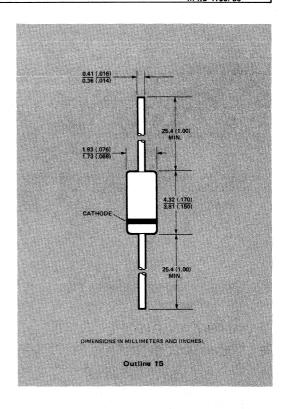
LARGE DYNAMIC RANGE

LOW SERIES RESISTANCE

LOW CAPACITANCE

LOW TEMPERATURE COEFFICIENT

Typically Less Than 20% Resistance Change from 25°C to 100°C


Description / Applications

These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters. The 5082-3168/3188 are optimized for VHF/UHF bandswitching.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.

Maximum Ratings

Junction Operating and Storage Temperature Range65°C to +150°C	С
Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10 ⁷ hours.	
Power Dissipation at 25°C	۷
(Derate linearly to zero at 150°C)	
Peak Inverse Voltage (PIV) V _B	s F

Mechanical Specifications

The HP Outline 15 package has a glass hermetic seal with dumet leads. The lead finish is tin for all PIN diode products except the 5082-3042 and -3043, which have gold plated leads. The leads on the Outline 15 package should be restricted so that the bend starts at least 1/16 inch (1.6mm) from the glass body. With this restriction, Outline 15 package will meet MILSTD-750, Method 2036, Conditions A (4 lbs., [1.8 kg.], tension for 30 minutes) and E. The maximum soldering temperature is 230° C for five seconds. Typical package inductance and capacitance are 2.5 nH and 0.13pF, respectively. Marking is by digital coding with a cathode band.

^{*}Also available in Tape and Reel. Please contact your local HP sales office for further information.

General Purpose Diodes Electrical Specifications at $T_A = 25$ °C

Part Number 5082-	Maximum Total Capacitance C _T (pF)	Minimum Breakdown Voltage V _{BR} (V)	Maximum Residual Series Resistance $R_S(\Omega)$	Minimum Effective Carrier Lifetime τ (ns)	Maximum Reverse Recovery Time t _{rr} (ns)	
GENERAL PI	JRPOSE SWITCHIN	G AND ATTENU	ATING			
-3002	0.25	300	1.0	100	100 (typ)	
-3001	0.25	200	1.0	100	100 (typ)	
-3039	0.25	150	1.25	100	100 (typ)	
IN5719 0.3**		150	1.25	100	100 (typ)	
-3077	0.3	200	1.5	100	100 (typ)	
FAST SWITCH	HING					
-3042	0.4*	70	1.0*	15 (typ)	5	
-3043	0.4*	50	1.5*	15 (typ)	10	
BAND SWITC	HING		And the second			
-3188	1.0*	35	0.6**	40 (typ)	12 (typ)	
-3168 2.0*		35	0.5**	40 (typ)	12 (typ)	
Test	V _R = 50V	V _R = V _{BR}	I _F = 100mA	I _F = 50mA	I _F = 20mA	
Conditions	*V _R = 20V **V _R = 100V f = 1 MHz	Measure I _R ≤ 10μA	*I _F = 20mA **I _F = 10mA f = 100 MHz	I _R = 250mA	V _R = 10V 90% Recovery	

Note: Typical CW power switching capability for a shunt switch in a 50Ω system is 2.5W.

RF Current Controlled Resistor Diodes Electrical Specifications at $T_A = 25$ °C

Part Number	Minimum Effective Carrier Lifetime	Minimum Breakdown Voltage V _{BR} (V)	$\begin{array}{c} \text{Maximum} \\ \text{Residual} \\ \text{Series} \\ \text{Resistance} \\ \text{R}_{S}\left(\Omega\right) \end{array}$	Maximum Total Capacitance C _T (pF)	High Resistance Limit, R_H (Ω)		Low Resistance Limit, $R_L(\Omega)$		Maximum Difference in Resistance vs. Bias
-	τ (ns)				Min.	Max.	Min.	Max.	Slope, Δx
HPND-4165	100	100	1.5	0.3	1100	1660	16	24	.04
HPND-4166	100	100	1.5	0.3	830	1250	12	18	.04
5082-3080*	1300(typ)	100	2.5	0.4	1000			8**	
5082-3379	1300(typ)	50		0.4				8**	_
5082-3081	2000 (typ)	100	3.5	0.4	1500			8**	
Test Conditions	I _F =50mA I _R =250mA	V _H =V _{BH} , Measure I _R ≪10μA	I _F =100mA f=100mHz	V _R =50V f=1mHz	400	01mA 0mHz	**1 _F =	.0mA 20mA 0mHz	Batch Matched at I _F =0.01mA and 1.0mA f=100mHz

^{*}The 1N5767 has the additional specifications:

 $[\]tau$ = 1.0 μ sec minimum

 $I_R = 1 \mu A \text{ maximum at } V_R = 50 V$

VF = 1V maximum at IF = 100mA.

Typical Parameters

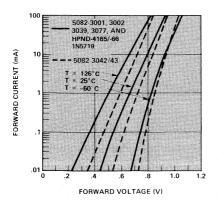


Figure 1. Typical Forward Current vs. Forward Voltage.

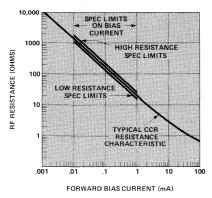


Figure 3. Typical RF Resistance vs. Bias for HPND-4165.

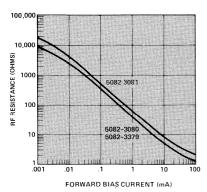


Figure 5. Typical RF Resistance vs. Forward Bias Current.

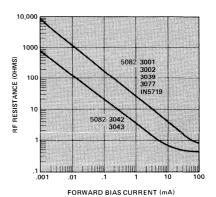


Figure 2. Typical RF Resistance vs. Forward Bias Current.

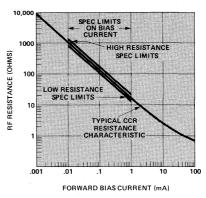


Figure 4. Typical RF Resistance vs. Bias for HPND-4166.

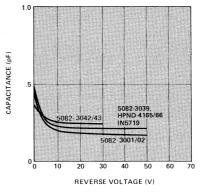


Figure 6. Typical Capacitance vs. Reverse Voltage.

Typical Parameters (Continued)

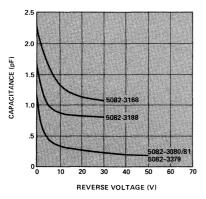


Figure 7. Typical Capacitance vs. Reverse Voltage.

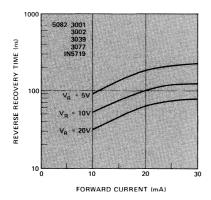


Figure 9. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

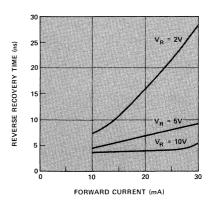


Figure 8. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3042, 3043.

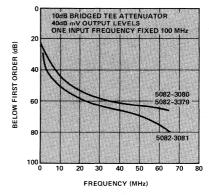


Figure 10. Typical Second Order Intermodulation Distortion.

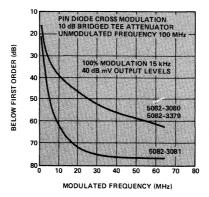


Figure 11. Typical Cross Modulation Distortion.

PIN DIODE LIMITER

5082-3071

Features

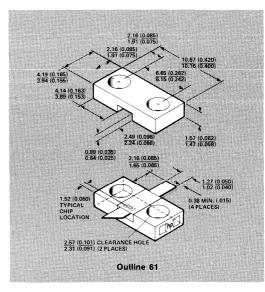
HIGH POWER HANDLING CAPABILITY
50 W Peak Pulse Power

LOW INTERMODULATION PRODUCTS

Typical 0.2 W Threshold Assures Wide Dynamic
Linear Range

BROAD BANDWIDTH 500 MHz to 10 GHz

LOW INSERTION LOSS
Less than 1 dB in X-band


EASY TO USE
Package Compatible with Stripline and Microstrip

NEGLIGIBLE SPIKE LEAKAGE

Description/Applications

The HP 5082-3071 passive limiter chip is functionally integrated into a 50 ohm transmission line to provide a broadband, linear, low insertion loss transfer characteristic for small signal levels. At higher signal levels self-rectification reduces the diode resistance to provide limiting as shown in Figure 2. Limiter performance is practically independent of temperature over the rated temperature range.

The 5082-3071 limiter module is designed for applications in telecommunication equipment, ECM receivers, distance measuring equipment, radar receivers, telemetry equipment, and transponders operating anywhere in the frequency range from 500 MHz through 10 GHz. An external dc return is required for self bias operation. This dc return is often present in the existing circuit, i.e. inductively coupled antennas, or it can be provided by a $\lambda/4$ resonant shunt transmission line. Selection of a high characteristic impedance for the shunt transmission line affords broadband operation. Another easy to realize dc return consists of a small diameter wire connected at a right angle to the electric field in a microstrip or stripline circuit. A 10 mA forward current will actuate the PIN diode as a shunt switch providing approximately 20 dB of isolation.

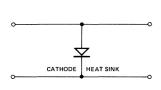
Maximum Ratings

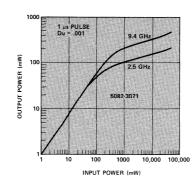
Junction Operating and Storage	
Temperature Range65° C to +	125° C
Power Dissipation ^[1]	1.0 W
Peak Incident Pulse Power ^[2]	50 W
Peak Inverse Voltage	50 V
Soldering Temperature	5 sec

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷ hours.

Notes:

- Device properly mounted in sufficient heak sink at T_A = 25°C, derate linearly to zero at maximum operating temperature.
- 2. $t_D = 1 \mu s$, f = 10 GHz, Du = 0.001, $Z_O = 50 \Omega$, $T_A = 25^{\circ} \text{ C}$.


Mechanical Specifications


The cover channel supplied with each diode should be used in balanced stripline circuits in order to provide good electrical continuity from the upper to the lower ground plane through the package base metal. Higher order modes will be excited if this cover is left off or if poor electrical contact is made to the ground plane.

The package transmission channel is filled with epoxy resin which combines a low expansion coefficient with high chemical stability.

Electrical Specifications at $T_A = 25$ °C

Part Number 5082-	Package Outline	Heat Sink	Maximum Insertion Loss (dB)	Maximum SWR	Maximum RF Leakage Power (W)	Typical Recovery Time (ns)
3071	-61	Cathode	1.2	2.0	1.0	100
Test Conditions	-			P _{in} = 0 dBm f = 9.4GHz	P _{in} = 50 W	P _{in} = 50 W

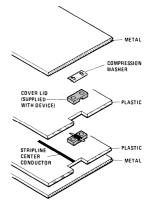


Figure 1. Heat Sink Polarity

Figure 2. Typical Pulse Limiting Characteristics

Figure 3. Suggested Stripline Assembly

STRIPLINE PIN DIODE SWITCHES/ ATTENUATORS

5082-3040 5082-3041 5082-3046 5082-3340

Features

LOW COST TO USE
Designed for Easy Mounting
BROADBAND OPERATION
HF through X-band

LOW INSERTION LOSS
Less than 0.5 dB to 10 GHz (5082-3040, -3340)

HIGH ISOLATION
Greater than 20 dB to 10 GHz
FAST SWITCHING/MODULATING

5 ns Typical (5082-3041)
LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation (5082-3041)

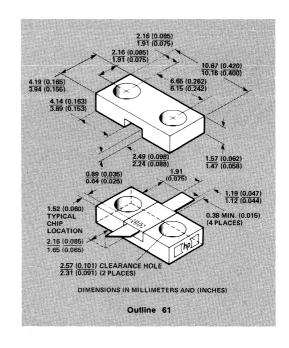
Description/Applications

These diodes are designed for applications in microwave and HF-UHF systems using stripline or microstrip transmission line techniques.

Typical circuit functions performed consist of switching, duplexing, multiplexing, leveling, modulating, limiting, or gain control functions as required in TR switches, pulse modulators, phase shifters, and amplitude modulators operating in the frequency range from HF through Ku-Band.

These diodes provide nearly ideal transmission characteristics from HF through Ku-Band.

The 5082-3340 is a reverse polarity device with characteristics similar to the 5082-3040. The 5082-3041 is recommended for applications requiring fast switching or high frequency modulation of microwave signals, or where the lowest bias current for the maximum attenuation is required.


The 5082-3046 has been developed for high peak pulse power handling as required in TR switches for distance measurement and TACAN equipment. The long effective minority carrier lifetime provides for low intermodulation products down to 10 MHz.

More information is available in HP AN 922 (Applications of PIN Diodes) and 929 (Fast Switching PIN Diodes).

Mechanical Specifications

The cover channel supplied with each diode should be used in balanced stripline circuits in order to provide good electrical continuity from the upper to the lower ground plane through the package base metal. Higher order modes will be excited if this cover is left off or if poor electrical contact is made to the ground plane.

The package transmission channel is filled with epoxy resin which combines a low expansion coefficient with high chemical stability.

Maximum Ratings

Part No. 5082-	-3040 -3340	-3041	-3046	
Junction Operating and Storage Temperature Range	-65° C to 125° C	-65°C to 125°C		
Power Dissipation[1]	2.5 W	1.0 W	4.0 W	
Peak Incident Pulse Power ^[2]	225 W	50 W	2000 W	
Peak Inverse Voltage	150 V	70 V	300 V	
Soldering Temperature	230°C for 5 sec.			

Notes:

- Device properly mounted in sufficient heat sink at 25°C, derate linearly to zero at maximum operating temperature.
- 2. $t_p = 1 \mu s$, f = 10 GHz, Du = 0.001, $Z_0 = 50 \Omega$, $T_A = 25^{\circ} C$.

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1×10^7 hours.

Electrical Specifications at T_A =25°C

Part Number 5082-	Package Outline	Heat Sink	Minimum Isolation (dB)	Maximum Insertion Loss (dB)	Maximum SWR	Maximum Reverse Recovery Time trr (ns)	Typical Carrier Lifetime τ (ns)	Typical CW Power Switching Capability PA (W)
3040	61	Anode	20	0.5	1.5	-	400	30
3041	61	Cathode	20	1.0	1.5	10	15	13
3046	61	Anode	20	1.0	1.5	_	1000	50
3340	61	Cathode	20	0.5	1.5	_	400	30
Test Conditions (Note 3)		-	I _F =100mA (Except 3041; I _F =20mA)	I _F = 0 P _{in} = 1mW	I _F = 0 P _{in} = 1 mW	I _F = 20mA V _R = 10V Recovery to 90%	I _F = 50mA I _R = 250mA	-

Note 3:Test Frequencies: 8 GHz 5082-3041, -3046; 10 GHz 5082-3040, and -3340.

Typical Parameters

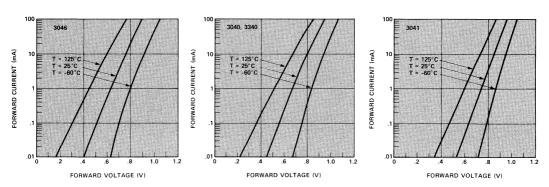


Figure 1. Typical Forward Characteristics.

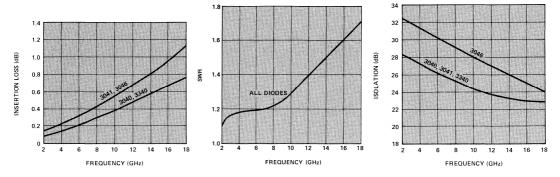
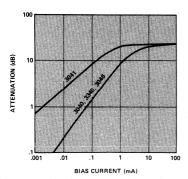
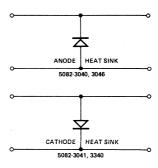
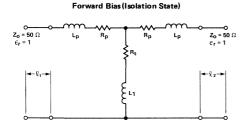
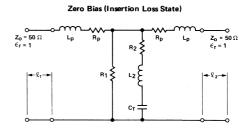


Figure 2. Typical Insertion Loss vs. Frequency.

Figure 3. Typical SWR vs. Frequency.

Figure 4. Typical Isolation vs. Frequency.


Figure 5. Typical Attenuation Above Zero Bias Insertion Loss vs. Bias Current at f = 8 GHz.

HEAT SINK POLARITY

Equivalent Circuits

Typical Equivalent Circuit Parameters - Forward Bias

Part Number 5082-	Lp (pH)	Rp (Ω)	Rs (Ω)	L ₁ (pH)	ℓ ₁ (mm)	ℓ ₂ (mm)
3040, 3340	200	0.25	1,0	20	2.4	5.0
3041	220	0.25	1.0	20	2.4	5.0
3046	220	0.25	0.6	17	2.4	5.0

Typical Equivalent Circuit Parameters - Zero Bias

Part Number 5082-	Lp (pH)	Rp (Ω)	R ₁ (KΩ)	L ₂ (pH)	R ₂ (ΚΩ)	C _T	ℓ ₁ (mm)	ℓ ₂ (mm)
3040, 3340	200	0.25	∞	0	5.0	0.10	2.4	5.0
3041	220	0.25	00	0	1.5	0.15	2.4	5.0
3046	220	0.25	00	0	1.5	0.15	2.4	5.0

Typical Switching Parameters

RF SWITCHING SPEED HP 5082-3041

The RF switching speed of the HP 5082-3041 may be considered in terms of the change in RF isolation at 2 GHz. This switching speed is dependent upon the forward bias current, reverse bias drive pulse, and characteristics of the pulse source. The RF switching speed for the shunt-mounted stripline diode in a 50 Ω system is considered for two cases: one driving the diode from the forward bias state to the reverse bias state (isolation to insertion loss), second, driving the diode from the reverse bias state to the forward bias state (insertion loss to isolation).

The total time it takes to switch the shunt diode from the isolation state (forward bias) to the insertion loss state (reverse bias) is shown in Figure 6. These curves are for three forward bias conditions with the diode driven in each case with three different reverse voltage pulses (V_{PR}). The total switching time for each case includes the delay time (pulse initiation to 20 dB isolation) and transition time (20 dB isolation to 0.9 dB isolation). Slightly faster switching times may be realized by spiking the leading edge of the pulse or using a lower impedance pulse driver.

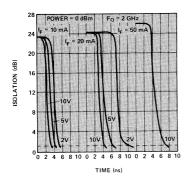


Figure 6. Isolation vs. Time (Turn-on) for HP 5082-3041. Frequency, 2 GHz.

The time it takes to switch the diode from zero or reverse bias to a given isolation is less than the time from isolation to the insertion loss case. For all cases of forward bias generated by the pulse generator (positive pulse), the RF switching time from the insertion loss state to the isolation state was less than 2 nanoseconds. A more detailed treatise on switching speed is published in AN929; Fast Switching PIN Diodes.

REVERSE RECOVERY TIME

Shown below is reverse recovery time, (t_{rr}) vs. forward current, (I_F) for various reverse pulse voltages V_R . The circuit used to measure t_{rr} is shown in Figure 7.

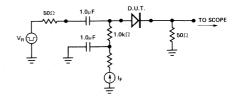


Figure 7. Basic trr Test Setup.

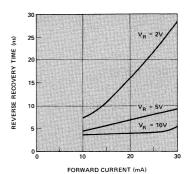


Figure 8. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3041.

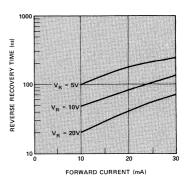


Figure 9. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3340.

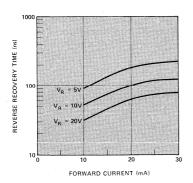


Figure 10. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3040.

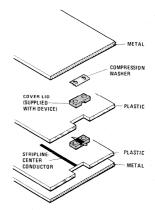


Figure 11. Suggested Stripline Assembly.

HERMETIC PIN DIODES FOR STRIPLINE/MICROSTRIP SWITCHES/ATTENUATORS

5082-3140 5082-3141 5082-3170

Features

BROADBAND OPERATION
HF through X-band

LOW INSERTION LOSS
Less than 0.5 dB to 10 GHz (5082-3140, -3170)

HIGH ISOLATION
Greater than 20 dB to 10 GHz (5082-3140, -3170)

FAST SWITCHING/MODULATING 5 ns Typical (5082-3141)

LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation (5082-3141)

2.16 (0.085) CHIP LOCATION (0.080) 2.34 DIA (0.100) 2.34 DIA (0.092) (2 PLACES) 10.67 (0.420) 10.67 (0.420) 10.18 (0.095) 10.18 (0.125) 10.67 (0.420) 10.18 (0.125) 10.195 10.19

Description/Applications

The HP 5082-3140 and -3170 are passivated planar devices and the 5082-3141 is a passivated mesa device. All are in a shunt configuration in hermetic stripline packages which are suitable for Hi-Rel applications. These diodes are optimized for good continuity of characteristic impedance which allows a continuous transition when used in 50 ohm microstrip or stripline circuits.

These diodes are designed for applications in microwave and HF-UHF systems using stripline or microstrip transmission line techniques.

Typical circuit functions performed consist of switching, duplexing, multiplexing, leveling, modulating, limiting, or gain control functions as required in TR switches, pulse modulators, phase shifters, and amplitude modulators operating in the frequency range from HF through Ku-Band. These diodes provide nearly ideal transmission characteristics from HF through Ku-Band.

The 5082-3170 is a reverse polarity device with characteristics similar to the 5082-3140.

The 5082-3141 is recommended for applications requiring fast switching or high frequency modulation of microwave signals, or where the lowest bias current for maximum attenuation is required.

More information is available in HP Application Note 922 (Applications of PIN Diodes) and 929 (Fast Switching PIN Diodes).

Maximum Ratings

Part No. 5082-	-3140 -3170	-3141			
Junction Operating and Storage Temperature Range	-65° C to 150° C	-65° C to 150° C			
Power Dissipation[1]	1.75 W	0.75 W			
Peak Incident Pulse Power ^[2]	225 W	50 W			
Peak Inverse Voltage	150 V	= 70 V			
Soldering Temperature	230° C for 5 sec.				

Notes:

- Device properly mounted in sufficient heat sink at 25°C, derate linearly to zero at maximum operating temperature.
- 2. $t_D = 1 \mu s$, f = 10 GHz, Du = 0.001, $Z_0 = 50 \Omega$, $T_A = 25^{\circ} \text{ C}$.

Mechanical Specifications

Package Outline 60 is hermetically sealed and capable of meeting the stringent requirements of space level high reliability testing. Both the package and lead materials are gold plated Kovar.

Electrical Specifications at T_A=25°C

Part Number 5082-	Package Outline	Heat Sink	Minimum Isolation (dB)	Maximum Insertion Loss (dB)	Maximum SWR	Maximum Reverse Recovery Time trr (ns)	Typical Carrier Lifetime 7 (ns)	Typical CW Power Switching Capability P _A (W)
3140	60	Anode	20	0.5	1.5	-	400	30
3141	60	Cathode	20	1.0	1.5	10	15	13
3170	60	Cathode	20	0.5	1.5	_	400	30
Test Conditions (Note 3)	- 19		I _F =100mA (Except 3141; I _F =20mA)	I _F = 0 P _{in} = 1mW	I _F = 0 P _{in} = 1 mW	I _F = 20mA V _R = 10V Recovery to 90%	I _F = 50mA I _R = 250mA	

Note 3: Test Frequencies: 8 GHz 5082-3141. 10 GHz 5082-3140, -3170.

Typical Parameters

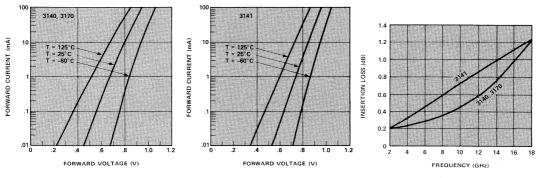


Figure 1. Typical Forward Characteristics.

Figure 2. Typical Insertion Loss vs. Frequency.

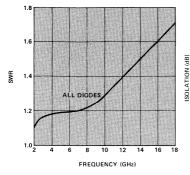


Figure 3. Typical SWR vs. Frequency.

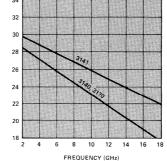
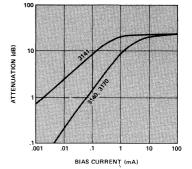
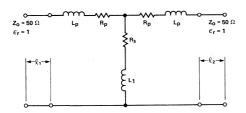
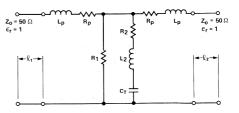


Figure 4. Typical Isolation vs. Frequency.


Figure 5. Typical Attenuation Above Zero Bias Insertion Loss vs. Bias Current at f = 8 GHz.

Equivalent Circuits

Forward Bias (Isolation State)

Zero Bias (Insertion Loss State)

Typical Equivalent Circuit Parameters - Forward Bias

Part Number	Lp	Rp	Rs	L ₁	l ₁	ℓ ₂
5082-	(pH)	(Ω)	(Ω)	(pH)	(mm)	(mm)
3140, 3170	150	0.0	0.95	30	3.8	3.8
3141	150	0.0	0.8	20	3.8	3.8

Typical Equivalent Circuit Parameters - Zero Bias

Part Number 5082-	Lp (pH)	R p (Ω)	R ₁ (KΩ)	L ₂ (pH)	R ₂ (KΩ)	C _T (pF)	(mm)	(mm)
3140, 3170	- 30	0.0	1.2	-16-	-0.0	0.20	5.3	5.3
3141	200	0.0	00	0	0.4	0.14	4.4	4.4

Typical Switching Parameters

RF SWITCHING SPEED

HP 5082-3141

The RF switching speed of the HP 5082-3141 may be considered in terms of the change \int in RF isolation at 2 GHz. This switching speed is dependent upon the forward bias current, reverse bias drive pulse, and characteristics of the pulse source. The RF switching speed for the shunt-mounted stripline diode in a 50 Ω system is considered for two cases, one driving the diode from the forward bias state to the reverse bias state (isolation to insertion loss), second driving the diode from the reverse bias state to the forward bias state (insertion loss to isolation).

The total time it takes to switch the shunt diode from the isolation state (forward bias) to the insertion loss state (reverse bias) is shown in Figure 6. These curves are for three forward bias conditions with the diode driven in each case with three different reverse voltage pulses (V_{PR}). The total switching time for each case includes the delay time (pulse initiation to 20 dB isolation) and transition time (20 dB isolation to 0.9 dB isolation). Slightly faster switching times may be realized by spiking the leading edge of the pulse or using a lower impedance pulse driver.

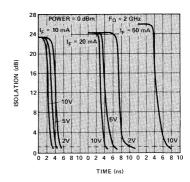


Figure 6. Isolation vs. Time (Turn-on) for HP 5082-3141 Frequency, 2 GHz.

The time it takes to switch the diode from zero or reverse bias to a given isolation is less than the time from isolation to the insertion loss case. For all cases of forward bias generated by the pulse generator (positive pulse), the RF switching time from the insertion loss state to the isolation state was less than 2 nanoseconds. A more detailed treatise on switching speed is published in AN929; Fast Switching PIN Diodes.

REVERSE RECOVERY TIME

Shown below is reverse recovery time, (t_{rr}) vs. forward current, (I_F) for various reverse pulse voltages V_R . The circuit used to measure t_{rr} is shown in Figure 7.

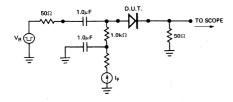


Figure 7. Basic t_{rr} Test Setup.

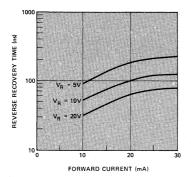


Figure 9. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3140.

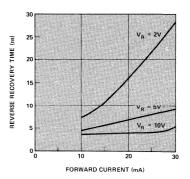


Figure 8. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3141.

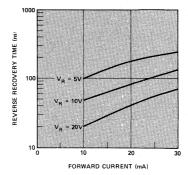


Figure 10. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages, 5082-3170.

PIN DIODES FOR FAST SWITCHING AND ATTENUATING

5082-3305 5082-3306

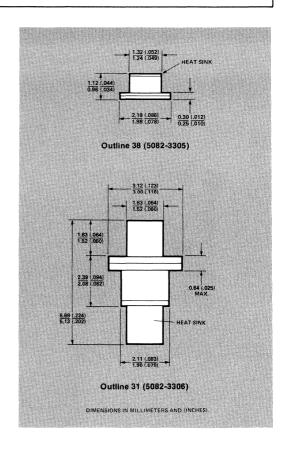
Features

NANOSECOND SWITCHING TIME Typically Less than 5 ns

LOW RESIDUAL SERIES RESISTANCE Less than 1 Ω

LOW DRIVE CURRENT REQUIRED Less than 20 mA for 1 Ω Rs

HIGH POWER LIMITING CAPABILITY 50 W Peak Pulse Power


CATHODE HEAT SINK

Description/Applications

The HP 5082-3305 and 5082-3306 are passivated silicon PIN diodes of mesa construction. Precisely controlled processing provides an exceptional combination of fast RF switching and low residual series resistance.

These HP PIN diodes provide unique benefits in the high isolation to insertion loss ratio afforded by the low residual resistance at low bias currents and the ultra-fast recovery realized through lower stored charge. Where low drive power is desired these diodes provide excellent performance at very low bias currents.

The HP 5082-3305 and 5082-3306 ceramic package PIN diodes are intended for controlling and processing microwave signals up to Ku band. Typical applications include single and multi-throw switches, pulse modulators, amplitude modulators, phase shifters, duplexers, diplexers and TR switches.

Maximum Ratings

Junction Operating and Storage Temperature Range
.....-65°C to +150°C

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷ hours

DC Power Dissipation at $T_{CASE} = 25^{\circ} C$ (Derate linearly to zero at $150^{\circ}C$)

HP 5082-3305 0.7 W HP 5082-3306 1.25W

Mechanical Specifications

The HP Package Outline 31 has a metal ceramic hermetic seal. The heat sink stud is gold-plated copper. The opposite stud is gold-plated kovar. Typical package inductance is 1.0 nH and typical package capacitance is 0.2 pF.

The HP Package Outline 38 also has a metal ceramic hermetic seal. The heat sink contact is gold plated copper. The opposite contact is gold-plated kovar. Typical package inductance is 0.4 nH and typical package capacitance is 0.2 pF.

The maximum soldering temperature for diodes in either package is 230°C for 5 seconds.

FAST SWITCHING/ATTENUATING Electrical Specifications at $T_A = 25$ °C

Part Number 5082-	Package Outline	Heat Sink	Minimum Breakdown Voltage V _{BR} (V)	Maximum Total Capacitance C _T (pF)	Maximum Series Resistance R _S (Ω)	Maximum Reverse Recovery Time t _{rr} (ns)
3305	38	12	70	0.4	1.0	10.0
3306	31	Cathode	70	0,45	1.0	10.0
Test Conditions			$V_R = V_{BR}$, meas. $I_R \le 10 \mu\text{A}$	f = 1 MHz V _R = 20V	f = 100 MHz I _F = 20mA	I _F = 20mA V _R = 10V 90% Recovery

Typical Parameters

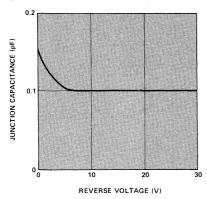


Figure 1. Typical Junction Capacitance vs. Reverse Voltage.

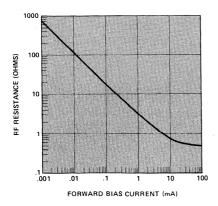


Figure 3. Typical RF Resistance vs. Forward Bias Current.

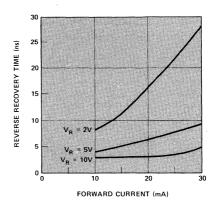


Figure 2. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

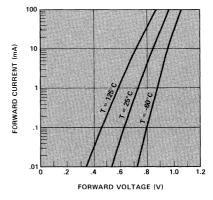


Figure 4. Typical Forward Current vs. Forward Voltage.

PIN DIODES FOR RF POWER SWITCHING/ ATTENUATION

5082-3101 5082-3102 5082-3201 5082-3202 5082-3303 5082-3304

Features

HIGH ISOLATION Greater Than 25 dB

LOW INSERTION LOSS

HIGH CONTROL SIGNAL DYNAMIC RANGE 10,000: 1 RF Resistance Change

LOW HARMONIC DISTORTION LIFETIME Greater Than 100 ns

BOTH ANODE AND CATHODE HEAT SINK MODELS AVAILABLE

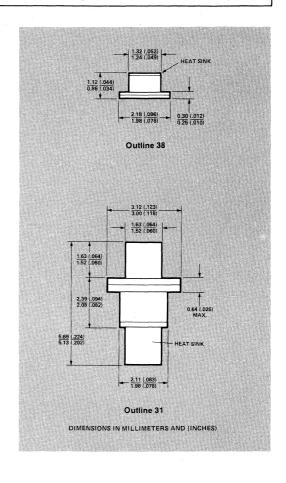
Description/Applications

HP 5082-3101/02, 5082-3201/02, 5082-3303/04 PIN diodes are silicon devices manufactured using modern processing techniques to provide optimum characteristics for RF switching, signal conditioning and control. These devices are of planar passivated design. Both anode and cathode heat sink models are available.

PIN diodes provide a variable RF resistance with DC bias current. The main advantages of a PIN diode over PN switching diodes are the low forward resistance and the low device capacitance.

These HP PIN Diodes are intended for use in RF switching, multiplexing, modulating, phase shifting, and attenuating applications from approximately 10 MHz to frequencies well into the microwave region. Due to their low parasitic capacitance and inductance, both HPPackage Outline 31 and 38 are well suited for broadband circuits up to 1 GHz and for resonated circuits up to 8 GHz.

These devices are especially useful where the lowest residual series resistance and junction capacitance are required for high on-to-off switching ratios. At constant bias the RF resistance is relatively insensitive to temperature, increasing only 20% for a temperature change from +25°C to +100°C.


Maximum Ratings

Junction Operating and	Storage	
Temperature Range .		-65°C to +150°C

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷

DC Power Dissipation at 25° C. (Derate linearly to zero at 150° C)

HP 5082-3101, 3102	1.0 W
HP 5082-3201, 3202, 3303, 3304	3.0 W

Mechanical Specifications

The HP Package Outline 31 has a metal ceramic hermetic seal. The heat sink stud is gold-plated copper. The opposite stud is gold-plated kovar. Typical package inductance is 1.0 nH and typical package capacitance is 0.2 pF.

The HP Package Outline 38 also has a metal ceramic hermetic seal. The heat sink contact is gold plated copper. The opposite contact is gold-plated kovar. Typical package inductance is 0.4 nH and typical package capacitance is 0.2 pF.

The maximum soldering temperature for diodes in either package is 230°C for 5 seconds.

RF POWER SWITCHING/ATTENUATING Electrical Specifications at $T_A = 25$ °C

Part Number 5082-	Package Outline	Heat Sink	Minimum Breakdown Voltage V _{BR} (V)	Maximum Total Capacitance C _T (pF)	$\begin{array}{c} \text{Maximum} \\ \text{Residual} \\ \text{Series} \\ \text{Resistance} \\ \text{R}_{S}\left(\Omega\right) \end{array}$	Minimum Carrier Lifetime au (ns)	Typical Reverse Recovery Time t _{rr} (ns)	Typical CW Power Handling Capability PA (W)
3101	38		200	0.32	1.2	100	100	40
3102	38	1,000	300	0.30	0.8	100	100	60
3201	31	Anode	200	0.35	1.2	100	100	120
3202	31		300	0.32	0.8	100	100	180
3303	31		200	0.40	1.2	100	100	120
3304	31	Cathode	300	0.32	0.8	100	100	180
Test Conditions			$V_R = V_{BR}$, meas. $I_R \le 10 \mu A$	V _R =50V,f=1MHz	I _F =100mA f=100MHz	I _F = 50mA I _R = 250mA	I _F =20mA, V _R =10V 90% Recovery	Series* Switch in 50Ω System

^{*}Divide by four for a shunt switch.

Typical Parameters

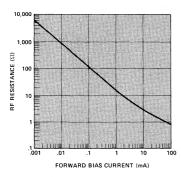


Figure 1. Typical RF Resistance vs. Forward Bias Current

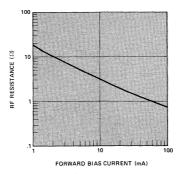


Figure 2. Typical RF Resistance vs. Forward Bias Current.

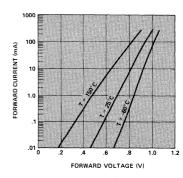


Figure 3. Typical Forward Characteristics.

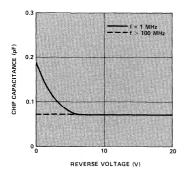
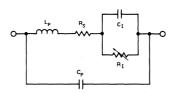



Figure 4. Typical Chip Capacitance vs. Reverse Voltage

C_P = Package Capacitance
L_P = Package Inductance
R_S = Residual Series Resistance

R_I = I-Layer Resistance C_I = I-Layer Capacitance

TYPICAL VALUES FOR Cp. AND Lp. ARE GIVEN UNDER "MECHANICAL SPECIFICATIONS", WITH REVERSE BIAS, ${\bf R}_1 \simeq 10$ t, Ω . TOTAL CAPACITANCE IS Cp. AND IS GIVEN IN "ELECTRICAL SPECIFICATIONS", WITH FORWARD BIAS C, IS NO LONGER PRESENT. R1 DECREASES WITH INCREASING FORWARD BIAS TO APPROXIMATELY ZERO AT 100 mA.

Figure 5. Device Equivalent Circuit.

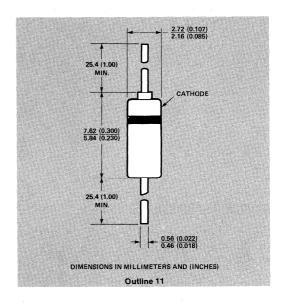
HIGH CONDUCTANCE DIODES

5082-1001 5082-1002 5082-1006

Features

FAST SWITCHING
LOW CAPACITANCE
HIGH CURRENT CAPABILITY

Description/Applications


The 5082-1000 series of diodes feature planar silicon epitaxial construction to provide high conductance, low capacitance, and nanosecond turn-on and turn-off. Turn-on time and voltage overshoot are minimized in these diodes of low conductivity modulation.

These diodes are ideally suited for applications such as core drivers, pulse generators, input gates or wherever high conductance without loss of speed is required.

Maximum Ratings

WIV — Working Inverse Voltage
1006 40 Volts
1001/1002 30 Volts
IF (Surge) — Forward Current Surge,
1.0 Second Duration 0.75 Amp
IF (Surge) — Forward Current Surge,
1.0 Microsecond Duration 7.50 Amp
Power Dissipation 1 @ TCASE = 25°C 500 mW
Operating Temperature Range65°C to +175°C
Storage Temperature Range65°C to +200°C

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10⁷ hours.

Mechanical Specifications

The HP Outline 11 package has a glass hermetic seal with dumet leads. The package will meet MIL-STD-750, Method 2036, Condition A (2 lbs. tension for 15 sec.) and E. The maximum soldering temperature is 230°C for 5 seconds. Outline 11 package capacitance and inductance are typically 0.15 pF and 4 nH respectively.

Electrical Specifications at T_A = 25°C

Part Number 5082-	Minimum Breakdown Voltage VBR (V)	Minimum Forward Current I _F (mA)	Minimum Forward Current IF (mA)	Maximum Reverse Leakage Current IR (nA)	Maximum Reverse Leakage Current I _R (μA)	Maximum Total Capacitance Co (pF)	Maximum Reverse Recovery Time t _{rr} (ns)	Maximum Turn-On Time ton (ns)
1001	35	150	500	200	200	1.5	1.5	2.5
1002	35	300	800	200	200	3.0	2.0	2.5
1006	50	150	500	200	200	1.1	1.5	-
Test Conditions	lg=10μA	Vr=1.0V [2]	V _F =1.4V 2	[3]	150° C 3	V _B =0V, f=1.0 MHz	(Figure 9)	(Figure 10)

NOTES: 1. Mounted on a printed circuit board in still air.

- 2. Measured at a repetition rate not to exceed the power
- 3. V_R=35V for 1006; V_R=30V for 1001, 1002.
- Inductance measured at the edge of the glass package seal is typically 4.0 nH for all devices.
- Rectification Efficiency is typically 65% for all devices (Figure 8).

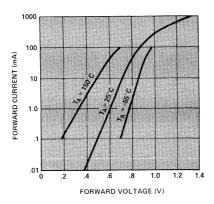


Figure 1. Typical Forward Conduction Characteristics. 5082-1001 and 1006.

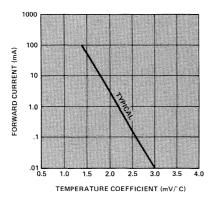


Figure 3. Typical Forward Current Temperature Coefficient.

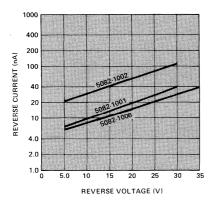


Figure 5. Typical Reverse Current vs. Reverse Voltage.

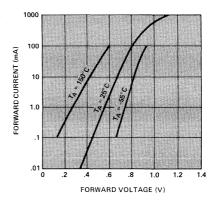


Figure 2. Typical Forward Conduction Characteristics. 5082-1002.

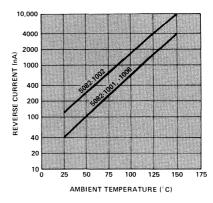


Figure 4. Typical Reverse Current at Specified $V_{\mbox{\scriptsize R}}$ vs. Increasing Temperature.

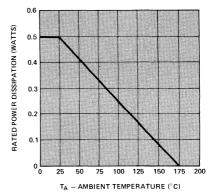


Figure 6. Power Dissipation Derating Characteristics.

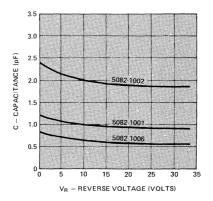


Figure 7. Typical Capacitance vs. Reverse Voltage Characteristics.

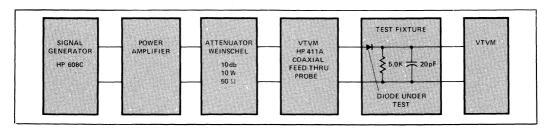


Figure 8. Test Circuit for Measuring the Rectification Efficiency. Signal source is adjusted to 100 MHz and 2V RMS as read on the 411A. The rectification efficiency calculated from the DC output voltage by RE = $V_{DC}/2.83$ is typically 65% for all devices.

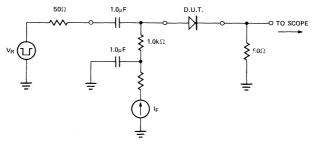


Figure 9. Test Circuit for Measuring Reverse Recovery Time. IF is set at 20 mA and VR at 2V.

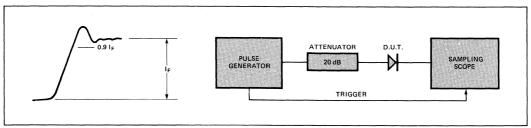


Figure 10. Test Circuit for Measuring Turn-On Time. If is adjusted for 10 mA after applying the step voltage, ton is measured as the time required to reach 0.9 If from initial application of the step voltage. For high excitation levels the ton value is significantly lower than the value specified, i.e., at 100 mA ton is typically less than 1.0 ns.

High Reliability Data for PIN Diodes

HIGH RELIABILITY BEAM LEAD PIN DIODES

TXVP-4001 TXVP-4050

(Generic HPND-4001/-4050)

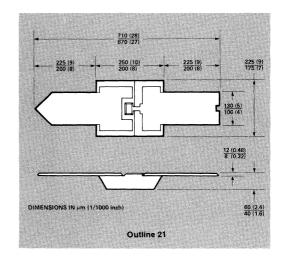
Features

QUALITY PERFORMANCE TESTED
Test Program Patterned After MIL-S-19500

LOW SERIES RESISTANCE 1.3 Ω Typical

LOW CAPACITANCE 0.07 pF Typical

FAST SWITCHING 2 ns Typical


RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull

Description/Applications

The TXVP-4001 and -4050 are beam lead PIN diodes designed specifically for low capacitance, low series resistance and rugged construction. The new HP mesa process allows the fabrication of beam lead PINs with a very low RC product. A nitride passivation layer provides immunity from contaminants which would otherwise lead to lg drift. A deposited layer provides scratch protection.

The TXVP-4001 and -4050 beam lead PIN diodes are designed for use in stripline or microstrip circuits. Applications include switching, attenuating, phase shifting and modulating at microwave frequencies. The low capacitance and low series resistance at low current make these devices ideal for applications in the shunt configuration.

After completion of the 100% inspection program per Table II, lot samples are subjected to the tests of Table III.

Maximum Ratings

Operating Temperature	-65°C to +175°C
Storage Temperature	
Power Dissipation at 25°C	
(Derate linearly	to zero at 175°C)
Minimum Lead Strength 4 grams	pull on either lead

Bonding Techniques

Thermocompression bonding is recommended but welding, thermosonic bonding or conductive epoxy can also be used. For additional information, see Application Note 974, "Die Attach and Bonding Techniques for Diodes and Transistors," or Application Note 979, "The Handling and Bonding of Beam Lead Devices Made Easy".

TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}C$

Part Voltag Number V _{BR} (\)		lage	Resis	ries tance (Ω)	Capacitance C _T (pF)				Minority Carrier Lifetime τ (ns)	Reverse Recovery Time t _{rr} (ns)	Reverse Current I _R (nA)	Forward Voltage V _F (V)
	Min.	Typ.	Typ.	Max.	Typ.	Max.	Typ.	Тур.	Max.	Max.		
TXVP-4001	50	80	1,8	2.2	0.07*	0.08*	30	3	100**	0.97		
TXVP-4050	30	40	1.3	1.7	0,12	0.15	25	2	100	0.98		
Test Conditions	Mea	V _{BR} sure 10 μA		I0 mA 0 MHz	*VR=	20 V = 30 V MHz	I _F = 10 mA I _R = 6 mA	IF = 10 mA V _R = 10 V	V _R = 10 V **H2 samples only	I _F = 50 mA		

^{*}Total capacitance calculated from measured isolation value in a series configuration.

TABLE II. 100% INSPECTION PROGRAM

Test/Inspection	Method	Conditions
High Temperature Storage (Stabilization Bake)	-	24 Hours at 300°C
2. Electrical Test (die probe) VBR, IA, VF		See Table I
3. Visual Inspection	HP A-5956-0112-72 [1]	and the second s

Note 1. Specification available upon request.

TABLE III. LOT QUALIFICATION

Test/Inspection	MIL-STD-750 Method	Conditions	LTPD
1.Beam Pull Test	2011H ¹	4 gram min., n = 11, r = 1	20
2. Assemble Samples in H2 Carrier			1
3. Electrical Test (Go/No Go)	-	See Table I	-
4. Thermal Shock (Temperature Cycling)	1051	10 cycles from -65° C to +200° C, 15 minutes at extremes	
5. First Interim Electrical Test (Read and Record)		7	1
6. Non-Operating Life	1032	340 hours at 200° C, n = 65	10
7. High Temperature Reverse Bias	1038	240 hours V _R = 80% of rated V _{BR} , T _C = 150° C	
Second Interim Electrical Test (Read, Record and Delta)	-	$\Delta I_R < \pm 50$ nA or 100% whichever is greater, $\Delta V_F < 10\%$	
9. Operating Life	1038	340 hours, f = 60 Hz, T _C = 125° C V _R = 80% of rated V _{BR} , PFM = 50 mW, n = 65	10
10. Final Electrical Test (Read, Record and Delta)	- 13	$\Delta I_R < \pm 50$ nA or 100%, whichever is greater. $\Delta V_F < 10\%$	100

Note 1: Per MIL-STD-883.

Typical Parameters

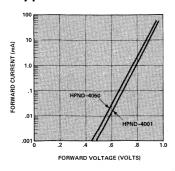


Figure 1. Typical Forward Characteristics.

Figure 2. Typical RF Resistance vs. Forward Bias Current.

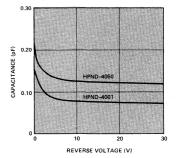


Figure 3. Typical Capacitance vs. Reverse Voltage.

HIGH RELIABILITY BEAM LEAD PIN DIODE

TXVP-4005

(Generic HPND-4005)

Features

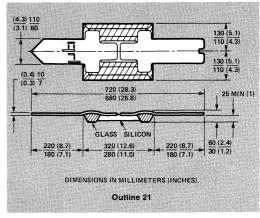
QUALITY PERFORMANCE TESTED
Test Program Patterned After MIL-S-19500

HIGH BREAKDOWN VOLTAGE 120V Typical

LOW CAPACITANCE 0.017 pF Typical

LOW RESISTANCE 4.7Ω Typical

RUGGED CONSTRUCTION
4 Grams Minimum Lead Pull


NITRIDE PASSIVATED

Description/Applications

The TXVP-4005 planar beam lead PIN diodes are constructed to offer exceptional lead strength while achieving excellent electrical performance at microwave frequencies.

The TXVP-4005 beam lead PIN diode is designed for use in stripline or microstrip circuits. Applications include switching, attenuating, phase shifting, limiting and modulating at microwave frequencies. The extremely low capacitance of the TXVP-4005 makes it ideal for circuits requiring high isolation in a series diode configuration.

After completion of the 100% inspection program per Table I, lot samples are subjected to the tests of Table III.

Maximum Ratings

Operating Temperature	-65°C to +175°C
Storage Temperature	-65°C to +200°C
Power Dissipation at 25°C	250 mW
(Derate linearly	to zero at 175°C)
Minimum Lead Strength 4 grams	pull on either lead

Bonding Techniques

Thermocompression bonding is recommended but welding, thermosonic bonding or conductive epoxy can also be used. For additional information, see Application Note 974, "Die Attach and Bonding Techniques for Diodes and Transistors", or Application Note 979, "The Handling and Bonding of Beam Lead Devices Made Easy".

TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}C$

Part Number	Vol	down tage (V)	Resis	ries stance (Ω)		citance (pF)	Ca Life	ority rrier etime (ns)	Rec	rerse overy me (ns)	Forward Voltage V _F (V)	Reverse Current I _R (nA)
TXVP-4005	Min.	Тур.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	Max.	Max.
	100	100	4.7	6.5	0.017	0.02	100	150	20	35	1.0	100
Test Conditions	I _R =	10 μΑ		20 mA 10 MHz		= 10V 0 GHz		10 mA 6 mA	V _R =	20 mA = 10V ecovery	I _F = 10 mA H2 Samples Only	V _R = 30V

TABLE II. 100% INSPECTION PROGRAM

Test/Inspection	Method	Conditions
High Temperature Storage (Stabilization Bake)		24 Hours at 300°C
2. Electrical Test (die probe) VBR, IR, VF	-	Per Table I
3. Visual Inspection	HP A-5956-0112-7211	<u> -</u>

Note 1. Specification available upon request.

TABLE III. LOT QUALIFICATION

Test/Inspection	MIL-STD-750 Method	Conditions	LTPD
1.Beam Pull Test	2011H ^[1]	4 gram min., n = 11, r = 1	20
2. Assemble Samples in H2 Carrier		-	_
3. Electrical Test (Go/No Go)		See Table I	_
4. Temperature Cycle (Thermal Shock)	1051	10 cycles frcm -65° C to +200° C, 15 minutes at extremes	
First Interim Electrical Test (Read and Record)	-		-
6. Non-Operating Life	1032	340 hours at 200° C, n = 65	_
7. High Temperature Reverse Bias	1038	240 hours V _R = 80% of rated V _{BR} , T _C = 150° C	10
Second Interim Electrical Test (Read and Record)	77-72-	$\Delta I_{R} < \pm 50$ nA or 100% whichever is greater, $\Delta V_{F} < 10\%$	
9. Operating Life	1038	340 hours, f = 60 Hz, T _C = 125° C V _R = 80% of rated V _{BR} , PFM = 50 mW, n = 65	10
10. Final Electrical Test (Read, Record)		Δ IR < \pm 50 nA or 100%, whichever is greater. Δ VF < 10%	

Note 1: Per MIL-STD-883.

Typical Parameters

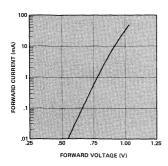


Figure 1. Typical Forward Conduction Characteristics.

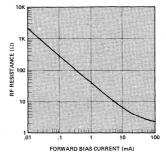


Figure 2. Typical RF Resistance vs. Forward Bias Current.

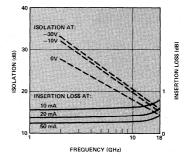


Figure 3. Typical Isolation and Insertion Loss in the Series Configuration ($Z_0 = 50~\Omega$).

PIN SWITCHING DIODE MILITARY APPROVED MIL-S-19500/443

JAN 1N5719 JANTX 1N5719

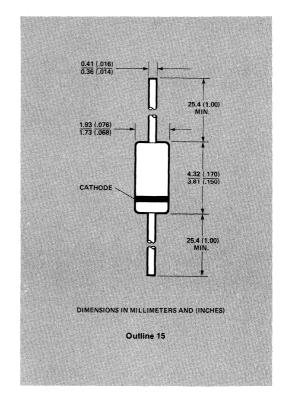
Features

QUALITY PERFORMANCE TESTED Proven Reliability LARGE DYNAMIC RANGE LOW HARMONIC DISTORTION HIGH SERIES ISOLATION

Description/Applications

The JAN Series 1N5719 is a planar passivated silicon PIN diode designed for use in RF switching circuits. These devices are well suited for variable attenuator, AGC, modulator, limiter, and phase shifter applications that require the high reliability of a JAN/JANTX device.

Maximum Ratings at T_{CASE} = 25°C


Operating and Storage Temperature

Range -65°C to +150°C

assumes an infinite heat sink

Operation of these devices within the recommended temperature limits will assure a device Mean Time to Failure (MTTF) of approximately 1 x 107 hours.

Reverse Voltage (Working) at 25° C	100 V dc
Reverse Voltage (non-rep)	150 V pk
Power Dissipation [At 25°C]	250 mW
Derate at 2.0 mW/°C above TCASE	$= 25^{\circ}C;$

TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}$ C

(Per Table I. Group A Testing of MIL-S-19500/443)

Part Number	Minimum Breakdown Voltage ^[1] V _{BR} (V)	Maximum Forward Voltage V _F (V)	Maximum Reverse Current I _{R1} (nA)	Maximum Reverse Current I _{R2} (μA)	Maximum Capacitance C _{VR} (pF)	Maximum Series Resistance R _S (Ω)	Minimum Effective Carrier Lifetime τ (ns)
1N5719	150	1.0	250	15	0.30	1.25	100
Test Conditions	I _R = 10 μA	I _F = 100 mA	V _R = 100V	V _R = 100V T _A = 150° C	V _R = 100V f = 1 MHz	IF = 100 mA f = 100 MHz	I _F = 50 mA I _R = 250 mA

Note 1

Tested per MIL-STD-750, Method 4021

JAN 1N5719: Samples of each lot are subjected to Group A inspection for parameters listed in Table I, and to Group B and Group C tests listed below. All tests are to the conditions and limits specified by MIL-S-19500/443.

JANTX 1N5719: Devices undergo 100% screening tests as listed below to the conditions and limits specified by MIL-S-19500/443*. A sample of the JANTX lot is then subjected to Group A, Group B, and Group C tests as for the JAN 1N5719 above. *JANTX devices have gold plated leads.

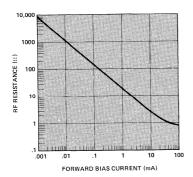
Table II 100% SCREENING PROGRAM (TX)

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments
High Temperature Storage (Stabilization Bake)	1032	t = 48 hours, T _A = 150° C
2. Thermal Shock (Temperature Cycling)	1051	10 Cycles, Condition F
3. Centrifuge (Constant Acceleration)	2006	20 Kg., Y ₁ axis
Hermeticity Tests Fine Leak Gross Leak	1071	Condition H Condition C or E
5. Interim Electrical Tests (IR, V _F)		See Table I
6. Burn-in	1038	$I_0 = 70$ mA (Average), $V_R = 120V$ (Peak) $T_A = 25^{\circ}$ C, $f = 60$ Hz, $t = 96$ hrs
7. Final Electrical Tests and Drift Evaluation (I _R , V _F) 10% P DA		Δ IR = ±250 nA or 100% whichever is greater Δ VF = ±100 mV

Table III GROUP A INSPECTION

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		5
Subgroup 2 DC Electrical Tests at 25° C	3 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	V _{BR} , V _F , I _{R1} , C _{VR} and R _S per Table I	2
Subgroup 3 Dynamic Electrical Tests at 25° C	_	τ per Table I	10
Subgroup 4 High Temperature Operation (T _A = 150° C) Reverse Current (I _{R2})	4016	Per Table I	10

Table IV GROUP B INSPECTION


Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD	
Subgroup 1 Physical Dimensions	2066		15	
Subgroup 2			10	
Solderability	2026	Immerse to within 0.1 inch of body		
Thermal Shock (Temperature Cycling)	1051	Test Condition F		
Thermal Shock (Glass Strain)	1056	Test Condition A		
Terminal Strength (Tension)	2036	Test Condition A, 15 secs., 4 lbs.		
Hermetic Seal	1071	Test Condition E		
Moisture Resistance	1021	Omit initial conditioning		
End Points:	per and a second of			
Forward Voltage (V _F)	4011	Per Table I		
Reverse Current (I _{R1})	4011	Per Table I	Commission Commission	
Subgroup 3			10	
Shock	2016	Non-operating, 1500G; t = 0.5 ms		
Chook	20.0	5 blows in each orientation X ₁ , Y ₁ , Y ₂		
Vibration Variable Frequency	2056	Non-operating		
Constant Acceleration	2006	Non-operating; 20 kg; X ₁ , Y ₁ , Y ₂	State of the state	
End Points:	2000	140h operating, 20 kg, Xf, Ff, F2		
Forward Voltage (V _F)	4011	Per Table I		
Reverse Current (In1)	4011	Per Table I		
		10.700.	10	
Subgroup 4	2036	Took Condition Fullsh land and date in	10	
Terminal Strength; Lead Fatigue	2030	Test Condition E with lead restriction		
Subgroup 5			$\lambda = 3$	
High Temperature Life (Non-Operating)	1031	$T_A = 150^{\circ} C_i^{(1)}$		
End Points:				
Forward Voltage (V _F)	4011	Per Table I		
Reverse Current (IR1)	4016	Per Table I		
Drift (ΔI _{R1})		$\Delta I_{R} = +25\%$ of initial value		
		or +50 nA whichever is greater		
Subgroup 6			λ = 3	
Steady State Operating Life	1026	lo = 70 mA, V _B = 120 V		
		(Peak); f = 60 Hz, (1)		
End Points:				
Forward Voltage (V _F)	4011	Per Table I		
Reverse Current (IR1)	4016	Per Table I		
Drift (ΔI _{B1})		Δ I _B = +25% of initial value		
	and the second	or +50 nA whichever is greater	194 (44)	

^{1.} t = 1000 hours every 6 months to qualify product, t = 340 hours on each lot thereafter.


Table V GROUP C INSPECTION

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Barometric Pressure, Reduced Measurements During Test:	1001	Pressure = 15 mm Hg; t = 1 min.	20
Reverse Current	4016	D.C. Method. V _R = 100 V dc	
Subgroup 2 Salt Atmosphere (Corrosion)	1041		20
Subgroup 3 Resistance to Solvents	<u> </u>	Method 215 of MIL-STD-202	20
Subgroup 4 Thermal Shock (Temperature Cycling)	1051	Test Condition F-1; Time at temperature extremes = 15 minutes minimum total test time = 72 hours maximum.	20
End Points: Forward Voltage (V _F) Reverse Current (I _{R1})	4011 4016	Per Table I Per Table I	
Subgroup 5 Low Temperature Operation (-65° C) Forward Voltage (V _F) Breakdown Voltage (V _{BR})	4011 4021	< 1.15 V at I _F = 100 mA Per Table I	20

Typical Parameters

Typical RF Resistance vs. Forward Bias Current.

Typical Forward Current vs. Forward Voltage.

HIGH RELIABILITY PIN DIODES FOR RF SWITCHING AND **ATTENUATING**

(Generic 5082-3001, -3002, -3039 and -3077)

TX-3001/2 TXB-3001/2 TXV-3001/2 TXVB-3001/2 TXB-3077 TX-3039

TXB-3039

TXV-3039 TXVB-3039 TX-3077 TXV-3077 TXVB-3077

Features

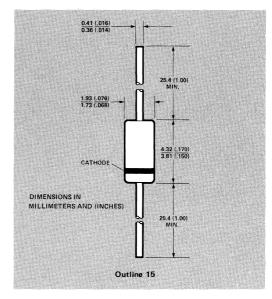
QUALITY PERFORMANCE TESTED Test Program Patterned After MIL-S-19500

LOW HARMONIC DISTORTION

LARGE DYNAMIC RANGE

LOW SERIES RESISTANCE

LOW CAPACITANCE


LOW TEMPERATURE COEFFICIENT

> Typically Less Than 20% Resistance Change from 25°C to 100°C

Description / Applications

These general purpose switching diodes are intended for low power switching applications such as RF duplexers, antenna switching matrices, digital phase shifters, and time multiplex filters.

The RF resistance of a PIN diode is a function of the current flowing in the diode. These current controlled resistors are specified for use in control applications such as variable RF attenuators, automatic gain control circuits, RF modulators, electrically tuned filters, analog phase shifters, and RF limiters.

Maximum Ratings

Junction Operating and Storage Temperature Range65°C to +150°C Operation of these devices within the above
temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10 ⁷ hours.
Power Dissipation at T _{CASE} = 25° C 250mW
(Derate linearly to zero at 150°C)
Peak Inverse Voltage (PIV)/BR

TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}$ C

Part Number	Maximum Total Capacitance C _T (pF)	Minimum Breakdown Voltage V _{BR} (V)	$\begin{array}{c} \text{Maximum} \\ \text{Residual} \\ \text{Series} \\ \text{Resistance} \\ \text{R}_{\text{S}}\left(\Omega\right) \end{array}$	Minimum Effective Carrier Lifetime r (ns)	Typical Reverse Recovery Time t _{rr} (ns)	Maximum Forward Voltage V _F (V)	Maximum Reverse Leakage Current I _R (nA)
5082-3002	0.20	300	1.0	100	100	1.0	100
5082-3001	0.25	200	1.0	100	100	1.0	100
5082-3039	0.25	150	1.25	100	100	1.0	100
5082-3077	0.30	200	_1.5	100	100	1.0	100
Test Conditions	V _R = 50 V f = 1 MHz	$V_R = V_{BR}$ Measure $I_R = 10 \mu A$	I _F = 100 mA f = 100 MHz	I _F = 50 mA I _R = 250 mA	I _F = 20 mA V _R = 10 V 90% Recovery	I _F = 100 mA	V _R = 100 V

High Reliability Programs

Three basic levels of High-Rel testing are offered.

- The TX prefix indicates a part that is preconditioned and screened to the program shown in Table III and IV.
- The TXB prefix identifies a part that is preconditioned and screened to TX level with a Group B quality conformance test as shown in Table V.
- The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is included as part of the preconditioning and screening.

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

TABLE II. PART NUMBER SYSTEM FOR ORDER AND RFQ INFORMATION.

Part Number Prefix	Screening Level
5082-	Commercial
TX-	100% Screen (per Tables III and IV)
TXB-	100% Screen and Group B (per Tables III, IV and V)
TXV-	100% Screen and Visual (per Tables III, and IV)
TXVB-	100% Screen and Group B (per Tables III, IV and V) with visual

TABLE III. 100% SCREENING PROGRAM

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments
Internal Visual (As required by Table II)	2074	
High Temperature Strorage (Stabilization Bake)	1032	t = 48 hours, T _A = 150° C
3. Thermal Shock (Temperature Cycling)	1051	Condition F, 10 cycles
4. Constant Acceleration	2006	20 Kg., Y ₁ axis
5. Hermeticity Tests Fine Leak Gross Leak	1071	Condition H Condition C or E
6. High Temperature Reverse Bias (HTRB)	1038	t = 96 hours, T _A = 150° C, V _B = 80% of rated V _{BR}
7. Interim Electrical Tests (IR, VF)		See Table I
8. Burn-in	1038	t = 168 hours, T _A = 25° C, PFM = 200 mW, f = 60 Hz, V _{RM} = 80% of rated V _{BR} .
9. Final Electrical Tests (IR, V _F) (PDA = 10%)		$\Delta I_R < \pm 50$ nA or 100%, whichever is greater. $\Delta V_F < 10\%$

TABLE IV. GROUP A PROGRAM

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		5
Subgroup 2 DC Electrical Tests at 25°C		See Table I for Tests and Conditions	5
Subgroup 3 Dynamic Electrical Tests at 25° C	<u>-</u>	See Table I for Tests and Conditions	5

TABLE V. GROUP B PROGRAM

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1			
Solderability	2026		15
Resistance to Solvents	1022		Committee Control
Subgroup 2			
Thermal Shock (Temperature Cycling)	1051	Condition F1 (25 cycles)	10
Hermetic Seal	1071		
Fine Leak		Condition H	
Gross Leak		Condition C or E	
D.C. Electrical Tests (I _R and V _F)		See Table I	
Subgroup 3			
Steady State Operating Life	1027	t = 340 hours, T _A = 25°C,	5
		PFM = 200 mW, f = 60 Hz.	
D.C. Electrical Tests (I _R and V _F)		V _{RM} = 80% of rated V _{BR}	
Subgroup 4			
Decap Internal Visual	2075		
(Design Verification)			
Die Shear	2037		20
Subgroup 5			
High Temperature Life	1032	t = 340 hours, T _A = 150° C	
(Non-Operating)			
D.C. Electrical Tests (IR and Vr)		See Table I	

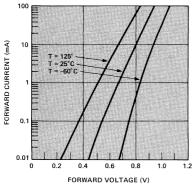


Figure 1. Typical Forward Current vs. Forward Voltage.

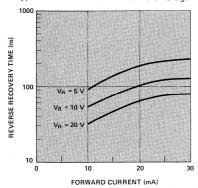


Figure 3. Typical Reverse Recovery Time vs. Forward Current for Various Reverse Driving Voltages.

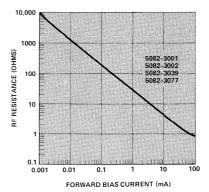


Figure 2. Typical RF Resistance vs. Forward Bias Current.

HIGH RELIABILITY PIN DIODES

(Generic 5082-3042 and -3043)

TX-3042 TX-3043 TXB-3042 TXB-3043 TXV-3042 TXV-3043 TXVB-3042 TXVB-3043

Features

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

FAST SWITCHING 10 ns Maximum

LOW SERIES RESISTANCE 1.5 Ω Maximum

LOW CAPACITANCE 0.4 pF Maximum

LOW DRIVE CURRENT REQUIRED Less than 20 mA for 1Ω Rs

Description/Applications

The TX-3042 and -3043 are oxide passivated silicon PIN diodes of mesa construction. Precisely controlled processing provides an exceptional combination of fast RF switching and low residual series resistance.

These hermetically sealed, glass packaged PIN diodes are intended for controlling and processing microwave signals through Ku band. Typical applications include single and multi-throw switches, pulse modulators, amplitude modulators, phase shifters, TR switches and duplexers.

Maximum Ratings

Operating and Storage Temperature
Range65° C to +150° C
Reverse Voltage (Working) Rated VBI
Power Dissipation at T _{CASE} = 25° C 250 mV
(Derate linearly to zero at 150°C)
Package 15 Maximum Solder Temperature 230°C
for 5 second

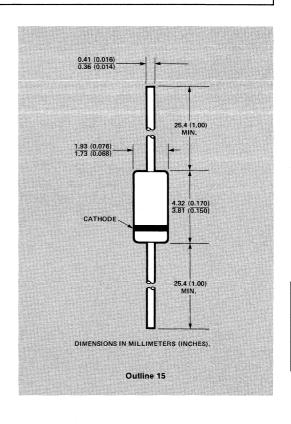


TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}$ C

Part Number	Minimum Breakdown Voltage V _{BR} (V)	Maximum Total Capacitance CT-20 (pF)	Maximum Residual Series Resistance R _S (Ω)	Typical Effective Carrier Lifetime τ (ns)	Maximum Reverse Recovery Time t _{rr} (ns)	Maximum Forward Voltage V _F (V)	Maximum Reverse Leakage Current I _R (ns)
5082-3042	70	0.4	1.0	15	- 5	- 1	- 100-
5082-3043	50	0.4	1.5	15	10	1	100
Test Conditions	V _R = V _{BR} Measure I _R ≤ 10 μA	V _R = 20 V f = 1 MHz	I _F = 20 mA f = 100 MHz	I _F = 50 mA I _R = 250 mA	I _F = 20 mA V _R = 10 V 90% Recovery	I _F = 100 mA	V _R = 80% Rated V _{BR}

High Reliability Programs

Three basic levels of High-Rel testing are offered.

- The TX prefix indicates a part that is preconditioned and screened to the program shown in Table III and IV.
- The TXB prefix identifies a part that is preconditioned and screened to TX level with a Group B quality conformance test as shown in Table V.
- The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is included as part of the preconditioning and screening.

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

TABLE II. PART NUMBER SYSTEM FOR ORDER AND RFQ INFORMATION.

Part Number	Screening Level
5082-3042 5082-3043	Commercial
TX-3042 TX-3043	100% Screen (per Tables III and IV)
TXB-3042	100% Screen and Group B (per
TXB-3043	Tables III, IV and V)
TXV-3042	100% Screen and Visual (per
TXV-3043	Tables III and IV)
TXVB-3042	100% Screen and Group B (per
TXVB-3043	Tables III, IV and V) with visual

TABLE III. 100% SCREENING PROGRAM.

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments
Internal Visual (As required by Table II)	2074	
2. High Temperature Storage (Stab. Bake)	1032	t = 48 hours, T _A = 150° C
3. Thermal Shock (Temperature Cycling)	1051	Condition F, 10 Cycles
4. Constant Acceleration	2006	20 Kg., Y ₁ axis
5. Hermeticity (Seal Tests) Fine Leak Gross Leak	1071	Condition H Condition C or E
6. HTRB	1038	$t = 48$ hours, $T_A = 150^{\circ}$ C, $V_R = 80\%$ of rated V_{BR}
7. Interim Electrical Tests (I _R , V _F)	and their only to the state of	See Table I
8. Burn-In	1038	t = 168 hours, T _A = 25° C, PFM = 200 mW, f = 60 Hz, V _{RM} = 80% of rated V _{BR}
9. Final Electrical Tests (IR, VF)		$\Delta l_R \le \pm 50$ nA or 100%, whichever is greater. $\Delta V_F \le \pm 10\%$.

TABLE IV. GROUP A PROGRAM.

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		5
Subgroup 2 DC Electrical Tests at 25° C		See Table I for tests and conditions.	5
Subgroup 3 Dynamic Electrical Tests at 25° C	_	See Table I for tests and conditons.	5

TABLE V. GROUP B PROGRAM.

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Solderability Resistance to solvents	2026 1022		15
Subgroup 2 Thermal Shock (Temperature Cycling) Hermetic Seal Fine Leak Gross Leak DC Electrical Tests (IR and VF)	1051 1071	Condition F1 (25 cycles) Condition H Condition C or E See Table I.	10
Subgroup 3 Steady State Operating Life DC Electrical Tests (In and V _F)	1027	t = 340 hours, T _A = 25° C, PFM = 200 mW, f = 60 Hz, V _{RM} = 80% of rated V _{BR} See Table I.	5
Subgroup 4 Decap Internal Visual (Design Verification) Die Shear	2075		20
Subgroup 5 High Temperature Life (Non-Operating) DC Electrical Tests (I _R and V _F)	1032	t = 340 hours, T _A = 150° C See Table I.	7

HIGH RELIABILITY PIN ATTENUATOR DIODES

(Generic 5082-3080)

TX-3080 TXB-3080 TXV-3080 TXVB-3080

Features

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

LOW DISTORTION

HERMETICALLY SEALED GLASS PACKAGE

USEFUL DOWN TO 1 MHz

TIGHT RESISTANCE TRACKING BETWEEN UNITS

SPECIFIED RF RESISTANCE WITH BIAS LOW TEMPERATURE COEFFICIENT

Description/Applications

The TX-3080 passivated silicon planar diffused PIN diode is specially tested as an RF current controlled resistor. The long minority carrier lifetime assures usefulness at operating frequencies down to 1 MHz, with very low distortion. Tightly controlled fabrication process for RF resistance variation with bias makes these diodes ideally suited for constant impedance AGC-circuits, leveling circuits, electronically controlled RC and RL circuits, pi-, T-, or bridged T- attenuators operating between 1 MHz to 1 GHz with very low distortion.

Maximum Ratings

Operating and Storage Temperature
Range65° C to +150° C
Reverse Voltage (Working) 100 V(peak)
Power Dissipation at T _{CASE} = 25° C 250 mW
(Derate linearly to zero at 150°C)
Package 15 Maximum Solder Temperature 230° C
for 5 seconds

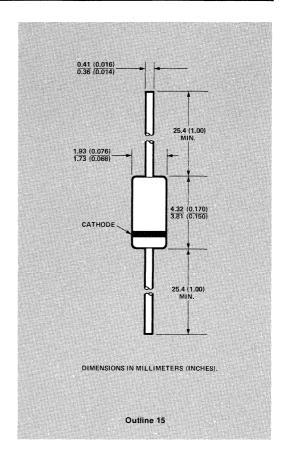


TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}$ C

Part Number	Minimum Breakdown Voltage V _{BR} (V)	Maximum Total Capacitance C _T (pF)	Typical Effective Minority Carrier Lifetime τ (ns)	Maximum Residual Series Resistance R _S (1)	Minimum High Resistance Limit R _H (Ω)	Maximum Low Resistance Limit R _L (Ω)	Maximum Forward Voltage V _F (V)	Maximum Reverse Leakage Current I _R (nA)
-3080	100	0.4	1300	2.5	1000	8	1	100
Test Condition	$V_R = V_{BR}$ Measure $I_R \le 10 \ \mu A$	V _R = 50 V f = 1 MHz			I _F = 0.01 mA f = 100 MHz	I _F = 20 mA f = 100 MHz	I _F = 30 mA	V _R = 50 V

High Reliability Programs

Three basic levels of High-Rel testing are offered.

- The TX prefix indicates a part that is preconditioned and screened to the program shown in Tables III and IV.
- The TXB prefix identifies a part that is preconditioned and screened to TX level with a Group B quality conformance test as shown in Table V.
- The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is included as part of the preconditioning and screening.

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

TABLE II. PART NUMBER SYSTEM FOR ORDER AND RFQ INFORMATION.

Part Number	Screening Level
5082-3080	Commercial
TX-3080	100% Screen (per Tables III and IV)
TXB-3080	100% Screen and Group B (per Tables III, IV and V)
TXV-3080	100% Screen and Visual (per Tables III and IV)
TXVB-3080	100% Screen and Group B (per Tables III, IV and V) with visual

TABLE III. 100% SCREENING PROGRAM.

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments
Internal Visual (As Required by Table II)	2074	
2. High Temperature Storage (Stabilization Bake)	1032	t = 48 hours, T _A = 150° C
3. Thermal Shock (Temperature Cycling)	1051	Condition F, 10 Cycles
4. Constant Acceleration	2006	20 Kg., Y ₁ axis
5. Hermeticity Tests Fine Leak Gross Leak	1071	Condition H Condition C or E
6. High Temperature Reverse Bias (HTRB)	1038	t = 48 hours, T _A = 150° C V _R = 80 V
7. Interim Electrical Tests (IR, VR)		See Table I
8. Burn-In	1038	t = 168 hours, T _A = 25°C, PFM = 200 mW, f = 60 Hz, V _{RM} = 80 V
9. Final Electrical Tests (I _R , V _F)		$\Delta I_{R} < \pm 50$ nA or 100%, whichever is greater. $\Delta V_{F} < 10\%$

TABLE IV. GROUP A PROGRAM.

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		5
Subgroup 2 DC Electrical Tests at 25°C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	See Table I for tests and conditions.	5
Subgroup 3 Dynamic Electrical Tests at 25°C	<u>_</u>	See Table I for tests and conditions.	5

TABLE V. GROUP B PROGRAM.

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Solderability Resistance to solvents	2026 1022		15
Subgroup 2 Thermal Shock (Temperature Cycling) Hermetic Seal Fine Leak Gross Leak DC Electrical Tests (In and VF)	1051 1071	Condition F1 (25 cycles) Condition H Condition C or E See Table I.	10
Subgroup 3 Steady State Operating Life DC Electrical Tests (In and Vr)	1027	t = 340 hours, T _A = 25° C, PFM = 200 mW, f = 60 Hz, V _{RM} = 80 V See Table I.	5
Subgroup 4 Decap Internal Visual (Design Verification) Die Shear	2075 2037		20
Subgroup 5 High Temperature Life (Non-Operating) DC Electrical Tests (I _R and V _F)	1032	t = 340 hours, T _A = 150°C See Table I.	7

HIGH RELIABILITY UHF/VHF SWITCHING PIN DIODES

(Generic 5082-3168 and -3188)

TX-3168 TX-3188 TXB-3168 TXB-3188 TXV-3168 TXV-3188 TXVB-3168 TXVB-3168

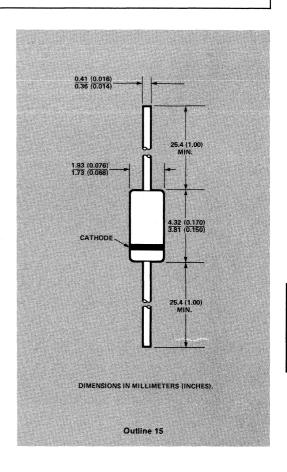
Features

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500

LOW SERIES RESISTANCE

LOW CAPACITANCE

HERMETIC PACKAGE


Description/Applications

The TX-3168 and -3188 are passivated silicon PIN diodes designed for optimal VHF/UHF switching characteristics. These devices switch rapidly between high and low values of RF impedance as a function of DC bias current.

These PIN diodes are designed for use in VHF/UHF band switching and general purpose RF switching that require high performance, and mechanical and environmental reliability.

Maximum Ratings

Operating and Storage Temperature
Range65° C to +150° C
Reverse Voltage (Working)
Power Dissipation at T _{CASE} = 25° C 250 mW
(Derate linearly to zero at 150°C)
Package 15 Maximum Solder Temperature 230° C
for 5 seconds

TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}$ C

Part Number	Minimum Breakdown Voltage V _{BR} (V)	Maximum Total Capacitance C _T (pF)	Maximum Residual Series Resistance R _S (Ω)	Typical Effective Carrier Lifetime τ (ns)	Typical Reverse Recovery Time t _{rr} (ns)	Maximum Forward Voltage V _F (V)	Maximum Reverse Current I _R (nA)
5082-3168	35	2.0	0.5	40	12	1	100
5082-3188	35	1.0	0.6	40	12	1	100
Test Conditions	I _R = 10 μA	V _R = 20 V f = 1 MHz	I _F = 10 mA f = 100 MHz	I _F = 50 mA I _R = 250 mA	I _F = 20 mA V _R = 10 V 90% recovery	IF = 100 mA	V _R = 20 V

High Reliability Programs

Three basic levels of High-Rel testing are offered.

- The TX prefix indicates a part that is preconditioned and screened to the program shown in Tables III and IV.
- The TXB prefix identifies a part that is preconditioned and screened to TX level with a Group B quality conformance test as shown in Table V.
- The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is included as part of the preconditioning and screening.

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

TABLE II. PART NUMBER SYSTEM FOR ORDER AND RFQ INFORMATION.

Part Number	Screening Level
5082-3168 5082-3188	Commercial
TX-3168 TX-3188	100% Screen (per Tables III and IV)
TXB-3168	100% Screen and Group B (per
TXB-3188	Tables III, IV and V)
TXV-3168	100% Screen and Visual (per
TXV-3188	Tables III and IV)
TXVB-3168	100% Screen and Group B (per
TXVB-3188	Tables III, IV and V) with visual

TABLE III. 100% SCREENING PROGRAM.

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments
Internal Visual (As Required by Table II)	2074	
2. High Temperature Storage (Stab. Bake)	1032	t = 48 hours, T _A = 150° C
3. Thermal Shock (Temperature Cycling)	1051	Condition F, 10 Cycles
4. Constant Acceleration	2006	20 Kg., Y ₁ axis.
5. Hermeticity Fine Leak Gross Leak	1071	Condition H Condition C or E
6. High Temperature Reverse Bias (HTRB)	1038	$t = 48$ hours, $T_A = 150$ °C, $V_R = 28$ Volts Max.
7. Interim Electrical Tests (I _R , V _F)		See Table I
8. Burn-In	1038	t = 168 hours, Ta = 25° C, PFM = 200 mW, f = 60 Hz, V _{RM} = 28 Volts
9. Final Electrical Tests (I _R , V _F)		$\Delta I_R \le \pm 50$ nA or 100%, whichever is greater. $\Delta V_F \le \pm 10\%$.

TABLE IV. GROUP A PROGRAM.

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD	
Subgroup 1 Visual and Mechanical	2071		5	
Subgroup 2 DC Electrical Tests at 25° C		See Table I for tests and conditions.	5	
Subgroup 3 Dynamic Electrical Tests at 25° C		See Table I for tests and conditions.	5	

TABLE V. GROUP B PROGRAM.

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Solderability Resistance to solvents	2026 1022		15
Subgroup 2 Thermal Shock (Temperature Cycling) Hermetic Seal Fine Leak Gross Leak DC Electrical Tests (I _R and V _F)	1051 1071	Condition F1 (25 cycles) Condition H Condition C or E See Table I.	10
Subgroup 3 Steady State Operating Life DC Electrical Tests (IR and VF)	1027	t = 340 hours, T _A = 25°C, PFM = 200 mW, f = 60 Hz, V _{RM} = 28 V See Table I.	5
Subgroup 4 Decap Internal Visual (Design Verification) Die Shear	2075 2037		20
Subgroup 5 High Temperature Life (Non-Operating) DC Electrical Tests (In and VF)	1032	t = 340 hours, T _A = 150°C See Table I.	7

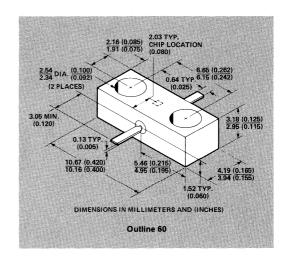
HIGH RELIABILITY PIN DIODES FOR STRIPLINE AND MICROSTRIP SWITCHES, ATTENUATORS, AND LIMITERS

TX-3141 TXB-3141 TXV-3141 TXVB-3141

(Generic 5082-3141)

Features

QUALITY PERFORMANCE TESTED
Test Program Patterned after MIL-S-19500


BROADBAND OPERATION HF through X-band

LOW INSERTION LOSS Less than 1.0 dB to 8 GHz

HIGH ISOLATION
Greater than 20 dB to 8 GHz

FAST SWITCHING/MODULATING 5 ns Typical

LOW DRIVE CURRENT REQUIRED
Less than 20 mA for 20 dB Isolation

Description/Applications

The 5082-3141 is a specially processed oxide passivated mesa PIN diode in shunt configuration within a 50 Ω hermetic package (Outline 60), optimized for good continuity of characteristic impedance, which allows a continuous transition when used in 50 Ω stripline or microstrip circuits. The stripline package overcomes the limitations in insertion loss, isolation, and bandwidth that are imposed by package parasitics of the other packages. The TX-3141 is recommended for applications requiring fast switching or high frequency signal modulation or where low bias current for maximum attenuation is required.

Maximum Ratings

TABLE I. ELECTRICAL SPECIFICATIONS AT $T_A = 25^{\circ}$ C

Part Number	Heat Sink	Minimum Isolation (dB)	Maximum Insertion Loss (dB)	Maximum SWR	Maximum Reverse Recovery Time (t _{rr}) (ns)	Typical Carrier Litetime (ns)	Forward Voltage V _F (V)	Reverse Current I _R (nA)
5082-3141	Cathode	20	1.0	1.5:1	10	15	1.0	100
Test Conditions		I _F = 20 mA f = 8 GHz	I _F = 0 P _{IN} = 1 mW f = 8 GHz	I _F = 0 P _{IN} = 1 mW f = 8 GHz	I _F = 20 mA V _R = 10 V Recovery to 90%	I _F = 50 mA I _R = 250 mA	I _F = 50 mA	V _R = 50 V

High Reliability Programs

Three basic levels of High-Rel testing are offered.

- The TX prefix indicates a part that is preconditioned and screened to the program shown in Table III and IV.
- The TXB prefix identifies a part that is preconditioned and screened to TX level with a Group B quality conformance test as shown in Table V.
- The TXV and TXVB prefix indicates that an internal visual inspection per MIL-STD-750 Method 2074 is included as part of the preconditioning and screening.

From these three basic levels, four combinations are available. Please refer to Table II as a guide.

TABLE II. PART NUMBER SYSTEM FOR ORDER AND RFQ INFORMATION

Part Number	Screening Level
5082-3141	Commercial
TX-3141	100% Screen (per Table III and IV)
TXB-3141	100% Screen and Group B (per Table III, IV, and V)
TXV-3141	100% Screen and Visual (per Table III, and IV)
TXVB-3141	100% Screen and Group B (per Table III, IV, and V) with Visual

TABLE III. 100% SCREENING PROGRAM

Screening Test/Inspection	MIL-STD-750 Method	Conditions/Comments
Internal Visual (As required by Table II)	2074	
2. High Temperature Storage (Stabilization Bake)	1032	t = 48 hours, T _A = 150° C
3. Thermal Shock (Temperature Cycling)	1051	Condition F, 10 Cycles
4. Constant Acceleration	2006	20 Kg., Y ₁ axis
5. Hermeticity Tests Fine Leak Gross Leak	1071	Condition H Condition C or E
6. High Temperature Reverse Bias (HTRB)	1038	t = 48 hours, T _A = 150°C, V _R = 56 V
7. Interim Electrical Tests (IR, VF)	The second secon	See Table I
8. Burn-In	1038	t = 168 hours, T _A = 25° C, PFM = 200 mW, V _{RM} = 56 V
9. Final Electrical Tests (IR, V _F)		$\Delta I_R \le \pm 50$ nA or 100%, whichever is greater. $\Delta V_F \le \pm 10\%$.

TABLE IV. GROUP A PROGRAM

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Visual and Mechanical	2071		5
Subgroup 2 DC Electrical Tests at 25° C		See Table I for tests and conditions.	5
Subgroup 3 Dynamic Electrical Tests at 25° C	_	See Table I for tests and conditions.	5

TABLE V. GROUP B PROGRAM

Test/Inspection	MIL-STD-750 Method	Conditions/Comments	LTPD
Subgroup 1 Solderability Resistance to solvents	2026 1022		15
Subgroup 2 Thermal Shock (Temperature Cycling) Hermetic Seal Fine Leak Gross Leak DC Electrical Tests (I _R and V _F)	1051 1071	Condition F1 (25 cycles) Condition H Condition C or E See Table I.	10
Subgroup 3 Steady State Operating Life DC Electrical Tests (I _R and V _F)	1027	t = 340 hours, T _A = 25° C, PFM = 200 mW, V _{RM} = 56 V See Table I.	5
Subgroup 4 Decap Internal Visual (Design Verification) Die Shear	2075 2037		20
Subgroup 5 High Temperature Life (Non-Operating) DC Electrical Tests (I _R and V _F)	1032	t = 340 hours, T _A = 150° C See Table I.	7

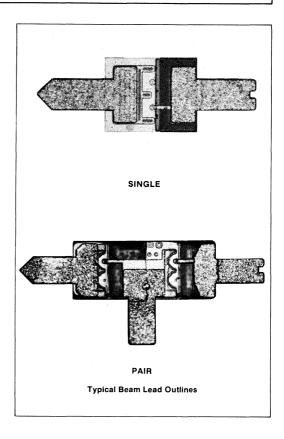
Reliability Data for PIN Diodes

RELIABILITY BULLETIN BEAM LEAD DIODES

Conclusion

Hewlett-Packard's beam lead diodes have successfully passed stringent environmental testing. Therefore, it is recommended that Hewlett-Packard beam lead diodes be used in military and space applications without the necessity of hermetically sealed packaging.

General


For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is compiled from reliability tests run to demonstrate that a product meets the specified design criteria. All Schottky and PIN beam lead families have fulfilled the standard requirements of reliability qualification, and the results of these tests are available upon request from Hewlett-Packard.

Program Description

The purpose of this program is to qualify all beam lead diodes for operation in extreme environmental conditions which may be encountered during military and space operations.

The following test sequence has been designed to assess the endurance of beam lead diodes through relevant environmental stresses such as heat and humidity. To qualify a device as hermetic, the conventional procedure is to perform dyepenetrant and Radiflo tests. However, because of the absence of an enclosed cavity in the unique design of the beam lead diode, these tests are not directly applicable. Therefore, this program utilizes reliability tests such as moisture resistance, salt atmosphere, and immersion to verify that the passivation layer on the beam lead acts as a seal to protect the active area of the diode.

To perform these tests, various Schottky and PIN diodes were mounted in non-hermetic, open packages and tested as exposed beam lead devices.

Applicable Part Numbers

PIN Beam Leads

HPND-4001

HPND-4005

HPND-4050

Test Sequence

Test	MIL-STD-750	Test Conditions	LTPD
Moisture Resistance 1, 2	1021	98% R.H10° C to 65° C, 10 days	and the second second
Temperature Cycling	1051	-65° C to 200° C, 100 cyc.	7
Constant Acceleration	2006	20 KG, 1 min. each axis	
Salt Atmosphere 2	1041	35° fog, 24 hours	10
Salt Water Immersion 2	(MIL-STD-883B, M1002B)	65°C saturated NaCl solution, 2 cycles	10

Notes:

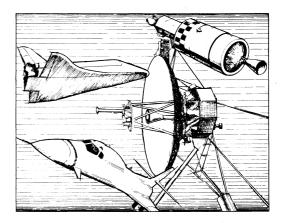
- 1. The sequence of moisture resistance and temperature cycling followed by constant acceleration assures a thorough evaluation of the effect of exposure to high humidity and heat conditions. End points were taken after each test.
- 2. End points were: Visual at 100X magnification and D.C. testing to MIL-STD-19500.

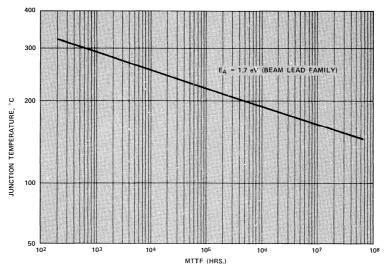
Results

As demonstrated by these tests, Hewlett-Packard's beam lead diodes exhibit superior performance when subjected to severe environmental conditions. This proven reliability is achieveable because of Hewlett-Packard's unique beam lead design. These beam lead diodes are made of tri-metal (Ti-Pt-Au or NiCr-Pt-Au), which extends both the operating and storage temperature range. In addition, a nitride passivation

layer acts as a sealant and provides immunity from contaminants which could lead to I_R drift. Conductive particle protection is provided by a layer of polyimide, which also functions as scratch protection. Therefore, it is recommended that Hewlett-Packard beam lead diodes be used in military and space applications without the necessity of hermetically sealed packaging.

RELIABILITY DATA BEAM LEAD PIN DIODES


HPND-4005


Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is initially compiled from reliability tests run prior to market introduction to demonstrate that a product meets design criteria. Additional tests are run periodically. The data on this sheet represents the latest review of accumulated test results.

Applications

This information represents the capabilities of the generic device. Failure rates and MTTF values presented here are achievable with normal MIL-S-19500 TX level screening. Reliability can only be guaranteed by testing specified lots of devices, under specified conditions, with specified LTPD levels.

Mean Time to Failure vs. Junction Temperature

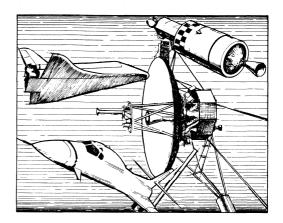
Burn-In and Storage

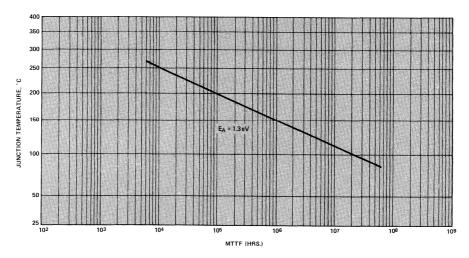
Test	Test Conditions LTPD/1000 Hours
High Temperature Life	1,000 hrs. min. storage time @ 200° C 2.0
Steady State Operating Life	1,000 hrs. min. operating time @ I _F = 30 mA, T _A = 150° C 2.0

Environmental

Test	MIL-STD-750 Reference	Test Conditions	LTPD
Temperature Cycling	1051.1 Cond. B	10 cycles from -65° C to +200° C, 30 min. at extremes, 5 min. transfer	4
Thermal Shock	1056.1	10 cycles from 0° C to +100° C, 3 sec. transfer	6
Soldering Heat	2031	10 seconds at 260° C	15
Shock	2016.1	5 blows each at X ₁ , Y ₁ , Y ₂ , 1500 G, 0.5 msec pulse	5
Vibration Fatigue	2046	32 ± 8 hrs. each at X, Y, Z, 96 hr. total, 60 Hz, 20 G min.	5

RELIABILITY DATA PIN DIODES


1N5767 5082-3080 5082-3168 5082-3188


Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is initially compiled from reliability tests run prior to market introduction to demonstrate that a product meets design criteria. Additional tests are run periodically. The data on this sheet represents the latest review of accumulated test results.

Applications

This information represents the capabilities of the generic device. Failure rates and MTTF values presented here are achievable with normal MIL-S-19500 TX level screening. Reliability can only be guaranteed by testing specified lots of devices, under specified conditions, with specified LTPD levels

Mean Time to Failure vs. Junction Temperature

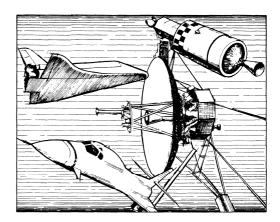
Burn-In and Storage

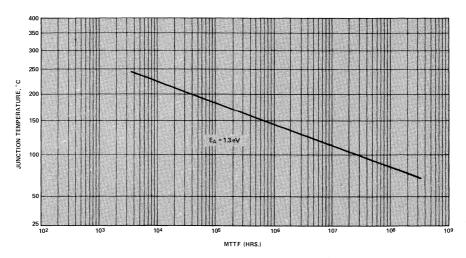
Test	Test Conditions	LTPD/1000 Hours
High Temperature Life	1,000 hrs. min. storage time @ 150° C	2
Steady State Operating Life	1.000 hrs. min. operating time @ PFM = 250 mW, $V_{RM} \approx 20 \text{ V}$, $f = 60 \text{ Hz}$, $T_A = 25^{\circ}\text{C}$	2

Environmental

Test	MIL-STD-750 Reference	Test Conditions	LTPD
Solderability	2026	Sn 60, Pb 40, solder at 230° C	6
Temperature Cycling	1051.1 Cond. B	10 cycles from -65° C to +150° C, 0.5 hrs. at extremes, 5 min. transfer	7
Thermal Shock	1056.1	5 cycles from 0°C to +100°C, 3 sec. transfer	6
Moisture Resistance	1021.1	10 days, 90-98% RH, −10 to +65° C, non operating	5
Shock	2016.1	5 blows each X ₁ , Y ₁ , Y ₂ , 1500 G. 0.5 msec pulse	6
Vibration Fatigue	2046	32 ± 8 hrs, each X, Y, Z, 96 hr. total, 60 Hz, 20 G min.	5
Vibration Variable Frequency	2056	4, 4 minute cycles each X, Y, Z, at 20 G min. 100 to 2000 Hz	5
Constant Acceleration	2006	1 minute each X ₁ , Y ₁ , Y ₂ , at 20,000 G	5
Terminal Strength	2037.1 Cond. E	Miniature glass package, -3, 90° arcs, 2 leads, 8 oz., lead restriction	6
Salt Atmosphere	1041.1	35° fog for 24 hours	7

RELIABILITY DATA PIN DIODES


1N5719 5082-3001 5082-3002 5082-3039 5082-3077 HPND-4165 HPND-4166


Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is initially compiled from reliability tests run prior to market introduction to demonstrate that a product meets design criteria. Additional tests are run periodically. The data on this sheet represents the latest review of accumulated test results.

Applications

This information represents the capabilities of the generic device. Failure rates and MTTF values presented here are achievable with normal MIL-S-19500 TX level screening. Reliability can only be guaranteed by testing specified lots of devices, under specified conditions, with specified LTPD levels.

Mean Time to Failure vs. Junction Temperature

Burn-In and Storage

Test	Test Conditions	LTPD/1000 Hours
High Temperature Life	1,000 hrs. min. storage time @ 150° C	2
Steady State Operating Life	1,000 hrs. min. operating time @ P _{FM} = 250 mW. V _{RM} = 150 V, f = 60 Hz, T _A = 25° C	2

Environmental

Test	MIL-STD-750 Reference	Test Conditions	LTPD
Solderability	2026	Sn 60, Pb 40, solder at 230° C	5
Temperature Cycling	1051.1 Cond. B	5 cycles from -65° C to +150° C, 0.5 hrs, at extremes, 5 min. transfer	5
Thermal Shock	1056.1	5 cycles from 0°C to +100°C, 3 sec. transfer	8
Moisture Resistance	1021.1	10 days, 90-98% RH, -10 to +65° C, non-operating	5
Shock	2016.1	5 blows each X ₁ , Y ₁ , Y ₂ , 1500 G. 0.5 msec pulse	5
Vibration Variable Frequency	2056	4, 4 minute cycles each X, Y, Z, at 20 G min. 100 to 2000 Hz	5
Constant Acceleration	2006	1 minute each X ₁ , Y ₁ , Y ₂ , at 20,000 G	5
Terminal Strength	2037.1 Cond. E	Miniature glass package =3, 90° arcs, 2 leads, 8 oz., lead restriction	5
Hermeticity	1014	Kr-85/dry N ₂ penetrant dye	2

ABSTRACTS OF APPLICATION NOTES AND BULLETINS

The Microwave Semiconductor Division field sales force is supported by a division applications staff. These technical specialists investigate circuit applications of most interest to the users of these semiconductor devices. The results of these investigations are reported in application notes or in brief application bulletins.

A complete list with brief abstracts is presented here. Below is a brief summary of Application Notes for PIN diodes. All of the Application Notes are available from your local HP Sales Office or nearest HP Components Authorized Distributor or Representative.

918 Pulse and Waveform Generation with Step Recovery Diodes

This note describes how the Step Recovery Diode can be used in a variety of pulse shaping and waveform generating circuits. The pulse shaping circuits involve reduction of rise and/or fall time of an input pulse. Other applications include a square wave generator, pulse delay generator, and FM discriminator.

922 Application of PIN Diodes

Discusses how the PIN diode can be applied to a variety of RF control circuits. Such applications as attenuating, leveling, amplitude and pulse modulating, switching, and phase shifting are discussed in detail. Also examines some of the important properties of the PIN diode and how they affect its application.

929 Fast-Switching PIN Diodes

Discusses the switching speed of the PIN diodes and the considerations which affect switching capability. For HP's 5082-3041/3042 fast-switching PIN diodes, AN 929 outlines basic drive requirements and comments on a few practical switching circuits. Considerations involved in the design of the filters required for use with the diodes are also discussed. For the 5082-3041, AN 929 provides two curves: 1) typical isolation vs. forward bias and 2) switching time vs. forward bias for peak reverse current as a parameter.

932 Selection and Use of Microwave Diode Switches and Limiters

Helps the systems designer select the proper switching or limiting component and assists him in integrating this component into the overall design of the system. This note is a practical, user-oriented approach to problems encountered with switching and limiting microwave signals.

936 High Performance PIN Attenuator for Low-Cost AGC Applications

PIN diodes offer an economical way of achieving excellent performance in AGC circuits. Significant improvements in crossmodulation and intermodulation distortion performance are obtained, compared to transistors. This note discusses other advantages of PIN diodes, such as low frequency operation, constant impedance levels, and low power consumption.

957-1 Broadbanding the Shunt PIN Diode SPDT Switch

Covers an impedance matching technique which improves the bandwidth of shunt PIN diode switches.

957-2 Reducing the Insertion Loss of a Shunt PIN Diode

Examines a simple filter design which includes the shunt PIN diode capacitance into a low pass filter, thereby extending the upper frequency limit.

957-3 Rectification Effects in PIN Attenuators

Attenuation levels of PIN diodes are changed by high incident power. Variation in attenuation may be minimized by proper choice of bias resistance. Performance of a PIN diode is limited by both carrier level and frequency because of rectification effects. This note presents the effects of frequency, power level, and bias supply for three types of HP diodes: 5082-3170, 3140 and 3141.

971 The Beam Lead Mesa PIN in Shunt Applications

The low RC product, fast switching time, and other unique features of the HPND-4050 beam lead PIN diode make it well-suited for switching applications in the shunt configuration. Switching performance, practical circuits, handling, and bonding instructions are included in this application note.

974 Die Attach and Bonding Techniques for Diodes and Transistors

Several package styles are available for use with hybrid integrated circuits. This application note gives detailed instructions for attaching and bonding these devices. A brief description of an impedance matching technique for mixer diodes is also included.

985 Achieve High Isolation in Series Applications with the Low Capacitance HPND-4005 Beam Lead PIN

Low capacitance is required for a diode to achieve high isolation in the series configuration. On the other hand, low resistance is needed for low insertion loss. This combination of characteristics in the HPND-4005 Beam Lead PIN diode

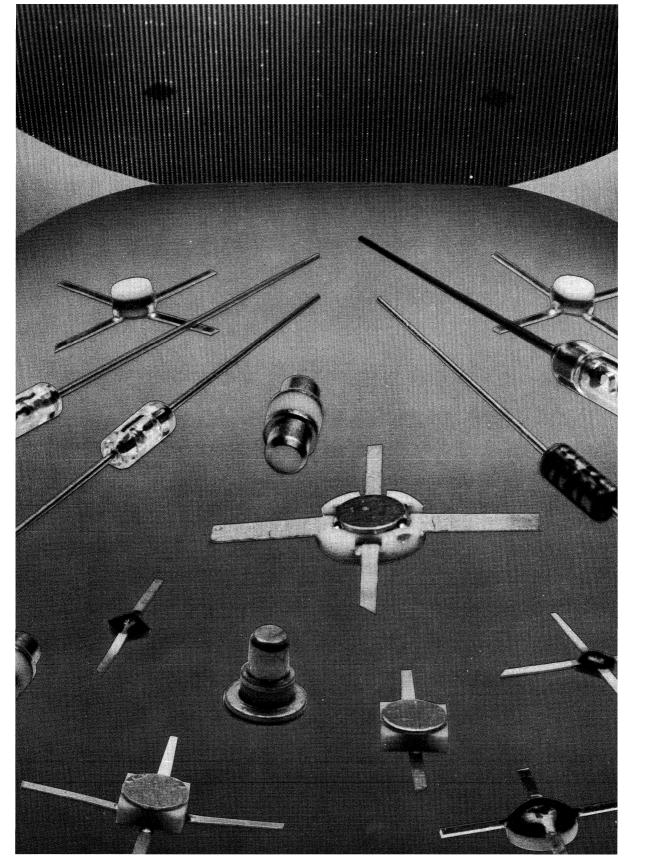
makes it well suited for series switching applications. The performance of this diode in a SPST switch and a SPDT switch is described in this application note. The equivalent circuits derived in this note would be useful in the design of circuits for switching and other signal control applications.

992 Beam Lead Attachment Methods

This application bulletin gives a general discription of various methods of attaching beam lead components to both hard and soft substrates. A table summarizes most common attachment methods with advantages, disadvantages, and equipment costs.

993 Beam Lead Diode Bonding to Soft Substrate (Restart)

The hard gold surface on standard PC boards with soft substrate material makes it almost impossible to successfully bond beam lead diodes on to the boards with normally recommended thermocompression bonding. Described in


this application note is a new method of resistive spot welding or modified gap welding, which uses a single electrode to weld the beam while the conductor is contracted separately. This method allows light pressure to be used on the weld probe, resulting in an effective bond without damaging the beam lead device.

AB 5 Current Source for Diode Testing

This application bulletin describes a constant current source designed primarily for the ease of use in laboratory measurements. Easily programmable by thumb wheel switches in 10 μA steps from 10 μA to 700 mA, its accuracy exceeds most commercially available current sources.

AB 6 PIN Diode RF Resistance Measurement

The use of the HP 4815 Vector Impedance Meter in conjunction with a tunable test fixture provides an efficient and reliable means for measuring the RF resistance of a PIN diode.

Step Recovery Diodes

Characteristics	288
Applications	289
Selection Guide	290
Alphanumeric Index	291
Chips	292
Packaged Devices	294
Reliability Data	300

CHARACTERISTICS OF STEP RECOVERY DIODES

The Step Recovery diode is most graphically described as a charge-controlled switch. That is, a forward bias stores charge, a reverse bias depletes this stored charge, and when fully depleted the SRD ceases to conduct current. The action of turning off, or ceasing current conduction, takes place so fast that the diode can be used to produce an impulse. If this is done cyclically, a train of impulses is produced. A periodic series of impulses in the time domain converts to a series of frequencies (all multiples of the basic exciting frequency) in the frequency domain. If these impulses are used to excite a resonant circuit, much of the total power in the spectrum can be concentrated into a single frequency. Thus input power at one frequency can be converted to output power at a higher frequency.

Two specifications that limit the total power output in any given multiplier mode are maximum junction temperature and thermal resistance. Within this limit, the output for a given input is determined by the efficiency of conversion. Efficiency depends heavily on the design of the multiplier, so Hewlett-Packard does not specify it.

The above specifications are related as follows:

1. Maximum Power Dissipation, PD (power dissipated by the diode)

$$P_D = \frac{200^{\circ} C - T_A}{\Theta_{JC}}$$

where T_A = ambient temperature, °C Θ_{JC} = thermal resistance, °C/W

2. Efficiency,
$$\eta = \frac{P_O}{P_O + P_D} \cdot 100\%$$

where P_0 = output power P_D = power dissipation

The reverse voltage breakdown limit, V_{BR}, limits the pulse height and can limit the input power before the thermal limit is reached.

The low frequency limit of the exciting signal is set by minority carrier lifetime, τ , and the ability to form an effective impulse at the higher frequencies is determined by the transition time, tt. Under forward current flow, IF, charge is built up in the SRD. Once reverse biased, reverse current will flow for a short period of time. This is called the delay time, td, as in the PIN diode. When all of the carriers have been removed, the current drops abruptly to zero. The time required for the reverse current to go from 0.8 IR to 0.2 IR is called transition time. Typical transition times range from 360 psec. down to 60 psec. for Step Recovery diodes.

The delay time t_{d} is related to minority carrier life time $\boldsymbol{\tau}$ by

$$\frac{t_d}{\tau} = \ln (1 + \frac{I_F}{I_B}).$$

Lifetime is measured by setting $I_F = 1.7 I_R$ so that $t_D = \tau$.

Minority carrier lifetime sets the lower input frequency limit because as the frequency gets lower and lower, more and more of the charge is dissipated by recombination during a cycle which reduces the energy in the impulse. The input frequency should be larger than the inverse of τ to minimize this loss of energy.

The highest output frequency for reasonable efficiency as a multiplier is limited by the width of the impulse spike which is determined by the transition time. Efficiency declines when the output frequency exceeds the inverse of the transition time.

APPLICATIONS OF STEP RECOVERY DIODES

As brought out in the previous section, the Step Recovery diode can be made to produce very sharp and narrow pulses. These contain harmonics of the exciting frequency.

A circuit which exploits the Step Recovery diode's production of a multitude of frequency components is called a Comb Generator. Comb generators are used in measurement equipment such as Spectrum Analyzers to produce locking signals.

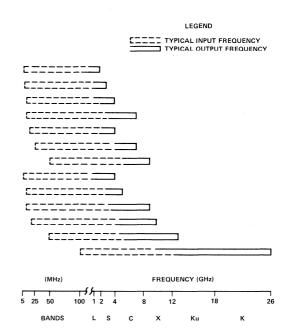
Another type of circuit picks out a single harmonic and optimizes the power output around that harmonic. This circuit is called a Multiplier. The end result of a multiplier is output power at some multiple (2f_i, 3f_i, etc.) of the input frequency. The efficiency of the conversion is high enough to make this a very practical scheme for multiplying up from a readily available low frequency oscillator to get a higher frequency signal. Multipliers are used as local oscillators, low power transmitters, or transmitter drivers in radar, telemetry, telecommunications, and instrumentation.

The Microwave Semiconductor Division Field Sales Representative is supported by an applications staff. These technical specialists investigate circuit applications of most interest to the users of these semiconductor devices. The result of these investigations are reported in application notes. Below is a brief summary of Application Notes for Step Recovery Diodes. All of these are available from your local HP Sales Office or nearest HP Components Authorized Distributor or Representative.

928 Ku-Band Step Recovery Multipliers

Discusses the use of step-recovery diodes in a times-eight single-stage frequency multiplier which, at 16 GHz, has a typical maximum output of 75 mW. The note also provides design modifications, together with references, for meeting other performance requirements.

948 How to Get More Output Power from a Comb Generator with the Right Bias Resistance


Power output in a comb generator can be doubled by using an appropriate bias resistor. With a half watt input level near 1 GHz, the optimum resistance is about 200 ohms. Higher values of resistance would be needed for higher input frequencies or lower input power.

989 Step Recovery Diode Multiplier

A straightforward technique for multiplier design is presented. The input circuit is a low pass filter which allows all of the input power to be absorbed by the diode and reflects harmonic power back to the diode. The output circuit is a bandpass filter which offers a low loss path to the desired frequency while reflecting all other harmonics back to the diode. The technique is illustrated by a doubler to 4 GHz using Hewlett-Packard 5082-0805 step recovery diode.

STEP RECOVERY DIODE SELECTION GUIDE

Part Number (5082-)							
Chip	Glass Package	Ceramic Package	V _{BR} (V)				
0017		0300	75				
0032	0180	0241	50				
	0113, 0114		35				
0021	_	0310	40				
0015	0112	0132	35				
	arrana .	0243	35				
0018	0151, 0153	0253	25				
Principal Control of C	0803	0800	75				
_	0815	0805	60				
		0810	60				
0090	0825	0820, 0821	45				
0020	0833	0830, 0320	30				
0008	0840	0335, 0830, 0885	25				
page 292	page 294	page 297					

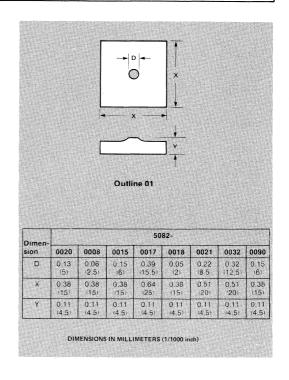
STEP RECOVERY DIODE ALPHANUMERIC INDEX

			Page Number	
Part No.	Description	Chip	Commercial Data Sheet	Reliability Data Sheet
5082-0008 5082-0015 5082-0017 5082-0018 5082-0020	Step Recovery Diode Chip Step Recovery Diode Chip Step Recovery Diode Chip Step Recovery Diode Chip Step Recovery Diode Chip		292 292 292 292 292	301 301 301 301 301
5082-0021 5082-0032 5082-0090 5082-0112 5082-0113	Step Recovery Diode Chip Step Recovery Diode Chip Step Recovery Diode Chip Step Recovery Diode Step Recovery Diode	5082-0015	292 292 292 294 294	301 301 301 301 301
5082-0114 5082-0132 5082-0151 5082-0153 5082-0180	Step Recovery Diode	5082-0015 5082-0018 5082-0018 5082-0032	294 297 294 294 294	301 301 301 301 301
5082-0241 5082-0243 5082-0253 5082-0300 5082-0310	Step Recovery Diode	5082-0032 5082-0018 5082-0017 5082-0021	297 297 297 297 297	301 301 301 301 301
5082-0320 5082-0335 5082-0800 5082-0803 5082-0805	Step Recovery Diode	5082-0020 5082-0008	297 297 297 294 297	301 301 301 301 301
5082-0810 5082-0815 5082-0820 5082-0821 5082-0825	Step Recovery Diode	5082-0090 5082-0090 5082-0090	297 297 297 297 294	301 301 301 301 301
5082-0830 5082-0833 5082-0835 5082-0840 5082-0885	Step Recovery Diode	5082-0020 5082-0020 5082-0008 5082-0008 5082-0008	297 294 297 294 297	301 301 301 301 301

STEP RECOVERY DIODE CHIPS

5082-0008 5082-0015 5082-0017 5082-0018 5082-0020 5082-0021 5082-0032 5082-0090

Features


OPTIMIZED FOR BOTH LOW AND HIGH ORDER MULTIPLIER DESIGNS FROM UHF THROUGH KU BAND

PASSIVATED CHIP FOR MAXIMUM STABILITY AND RELIABILITY

GOLD TOP CONTACT FOR LONG SHELF LIFE AND BONDABILITY

Description

These diodes are manufactured using modern epitaxial growth techniques. The diodes are passivated with a thermal oxide for maximum stability. The result is a family of devices offering highly repeatable, efficient and reliable performance. Both the anode and cathode contact metalizations are gold allowing long shelf life and repeatable bondability. These diodes are designed to meet the general requirements of MIL-S-19500.

Maximum Ratings

Junction Operating and
Storage Temperature Range -60° C to +200° C
Maximum Die Attach
Temperature +310° C for 1 minute

Operation of these devices within the above temperature ratings will assure a device Median Time To Failure (MTTF) of approximately 1 x 10^7 hours.

Applications

These Step Recovery Diodes are intended for medium and low power multipliers. Typical applications are in hybrid local oscillators, especially where low phase noise is required, in terrestrial communications, satellite communications, TVRO, mobile communications and test equipment Input frequencies extend down to 10 MHz with output frequencies through 40 GHz.

Electrical Specifications at $T_A=25^{\circ}\,C$

Part Number	Minimum Breakdown Voltage, V _{BR} (V) ^[1]
5082-0020	25
5082-0008	15
5082-0032	65
5082-0090	45
5082-0021	40
5082-0015	35
5082-0017	75
5082-0018	25

Typical		Typical Tra	Nearest Equivalent	
Chip Capacitance C _J (pF) ^[2]	ance Lifetime Time Level			Packaged Part No. 5082-
0.4-1.0	-20	60	300	0830
0.15-0.5	10	50	100	0835
4.0	150	250	1500	0241
1.0	50	80	300	0820
2.0	100	150	-1000	0310
1.2	60	150	1000	0132
4.0	300	300	2400	0300
0,5	20	70	200	0253

- 1. Minimum Breakdown Voltage test condition is $I_R = 10 \mu A$. 2. Capacitance sample test condition is $V_R = 10 V$ and f = 1 MHz. 3. Lifetime sample test condition is $I_F = 10 mA$ and $I_R = 6 mA$.

GLASS PACKAGED STEP RECOVERY DIODES

5082-0112 5082-0803 5082-0113 5082-0815 5082-0114 5082-0825 5082-0151 5082-0833 5082-0153 5082-0840 5082-0180

Features

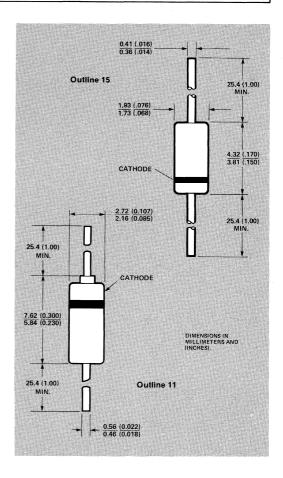
OPTIMIZED FOR BOTH LOW AND HIGH ORDER MULTIPLIER DESIGNS FROM UHF THROUGH Ku BAND

PASSIVATED CHIP FOR MAXIMUM STABILITY AND RELIABILITY

AVAILABLE IN A VARIETY OF PACKAGES

Description/Applications

These diodes are manufactured using modern epitaxial growth techniques. The diodes are passivated with a thermal oxide for maximum stability. The result is a family of devices offering highly repeatable, efficient and reliable performance which are designed to meet the general requirements of MIL-S-19500.


These diodes are intended for medium and low power multipliers. Typical applications are in local oscillators, especially where low phase noise is required, in terrestrial communications, satellite communications, TVRO, mobile communications and test equipment. Input frequencies extend down to 10 MHz with output frequencies reaching 26 GHz.

Maximum Ratings

Junction Operating and Storage Temperature

- to - g porataro	00 0 10 200 0
Operation of these devices within the	above
temperature ratings will assure a	device
Median Time To Failure (MTTF) of a	pproxi-
mately 1 x 10 ⁷ hours	
DC Power Dissipation at T _{CASE} = 25°C	200°C – T _{case}
DO TOTTO DISCIPLIFICATION OF THE PERSON OF T	A:_

Soldering Temperature 230°C for 5 sec.

Mechanical Specifications

The HP outline 15 and 11 packages have glass hermetic seals with dumet leads. The maximum soldering temperature is 230° C for 5 seconds. The leads on outline 15 should be restricted so that any bend starts at least 1.6 mm (.063 in.) from the glass body.

-65°C to 200°C

Electrical Specifications at $T_A = 25^{\circ}C$

Marie Acres	Maximum Junction	Minimum Breakdown	Minimum Cutoff	Transi Time		Minimum	
Part Number	Capacitance C _J (pF)	Voltage V _{BR} (V)	Frequency fc (GHz)	Maximum t _t (psec)	Charge Level (pc)	Lifetime τ (nsec)	Package Outline
5082-0803	6.0*	70	100	400	1500	200	15
5082-0113	4.85	35		250	1500	80	11
5082-0180	4.45	50	-	225	1500	100	11
5082-0815	4.0*	50	140	320	1500	100	15
5082-0114	3.85	35		225	1500	80	11-
5082-0825	2.0*	45	160	160	300	30	15
5082-0833	1.6*	25	175	90	300	10	15
5082-0112	1.55	35		175	1000	50	11
5082-0151	0.65	15		100	200	10	15
5082-0840	0.60*	15	300	75	_100	10	15
5082-0153	0.40	25		95	200	10	15
Test Conditions	f = 1 MHz V _R = 10 V *V _R = 6 V	$I_{R} = 10~\muA$	fc = 1 2π Rs Cj			I _F = 10 mA I _R = 6 mA	

- The transition times shown for the package 15 devices are limited by the package inductance to a minimum of 100 ps. The lower transition times shown for the -0833, -0840, -0151, and -0153 are based on the performance of the chip.
 Typical Θ_{JC} for Outline 15 is 600° C/W and for Outline 11 is 300° C/W.

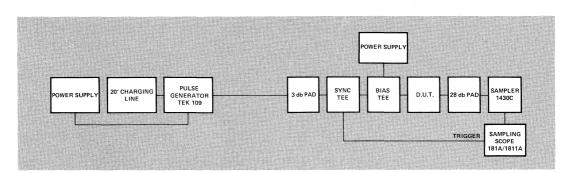


Figure 1. Test circuit for transition time. The pulse generator circuit is adjusted for a 0.5 A pulse when testing 5082-0151 and -0840. A pulse of 1.0A is used for all other diodes. The bias current is adjusted for the specified stored charge level. The transition time is read between the 20% and the 80% points on the oscilloscope.

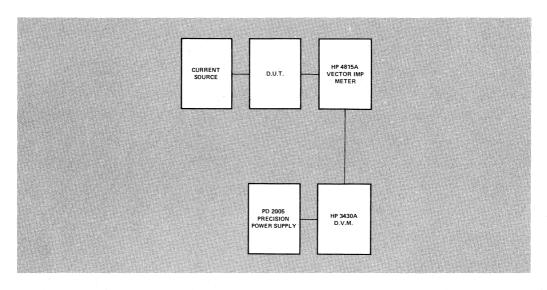


Figure 2. Test set-up for measurement of series resistance. The D.U.T. is forward biased (IF) and the real part of the diode impedance is measured at 100 MHz. The D.V.M. is set up to read the real part on the Vector voltmeter. The precision power supply is used to offset the test circuit resistance. Rs is measured at IF = 100 mA except 5082-0803 where IF = 500 mA.

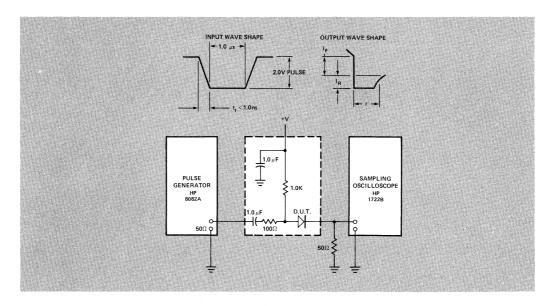


Figure 3. The circuit for measurement of the effective minority carrier lifetime. The value of the reverse current (IR) is approximately 6 mA and the forward current (Ir) is 10 mA. The lifetime (r) is measured across the 50% points of the observed wave shape. The input pulse is provided by a pulse generator having a rise time of less than one nanosecond. The output pulse is amplified and observed on a sampling oscilloscope.

CERAMIC PACKAGED STEP RECOVERY DIODES

5082-0132	5082-0800
5082-0241	5082-0805
5082-0243	5082-0810
5082-0253	5082-0820
5082-0300	5082-0821
5082-0310	5082-0830
5082-0320	5082-0835
5082-0335	5082-0885

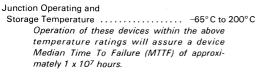
Features

UHF THROUGH Ku BAND DIODES For Low Order and High Order Multipliers

RF TESTED

For Guaranteed Performance (5082-0300 Series)

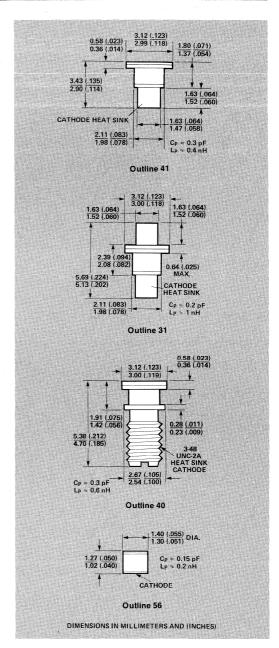
HERMETIC PACKAGE


For Industrial/Military Environments

Description/Applications

HP Step Recovery Diodes are constructed using modern epitaxial techniques. Oxide passivation insures maximum stability and reliability. Devices are available in many package styles.

These devices are intended for use as low and high order harmonic generators requiring the ultimate in performance and reliability. They excel as doublers as well as high order multipliers, because the fast transition time design allows full usage of the forward stored charge effect in improving nonlinearity and efficiency for frequency multiplication. These step recovery diodes have the basic design capability to meet the general reliability requirements of MIL-S-19500, in addition to the special reliability requirements of man-rated space systems


Maximum Ratings

DC Power Dissipation at	200° C — T _{CASE}
T _{CASE} = 25°C	
	θ jc
Soldering Temperature	230° C for 5 sec

Mechanical Specifications

Hewlett-Packard's Step Recovery Diodes are available in a variety of packages. The metal ceramic packages are hermetically sealed. The anode studs and flanges are gold-plated Kovar. The cathode studs are gold-plated copper. The maximum soldering temperature for metal-ceramic packages is 230° C for 5 seconds.

Electrical Specifications at $T_A = 25^{\circ}C$

Part Number	1	ction	Minimum Breakdown	Minimum Cutoff		Transition Time		Minimum	Typical Thermal Resistance ^θ ic	Typical Output Power
	C _J (pF)		Voltage V _{BR}	Frequency	Package	Maximum It	Charge Level	Lifetime		
	Min.	Max.	(V)	(GHz)	Outline	(psec)	(pC)	(nsec)	(°C/W)	(W)
5082-0800	3.5	5.0	75	100	40	400	1500	200	15	10
5082-0241	_	4.6*	65	-	31	200	1500	100	20	_
5082-0805	2.5	3.5	60	140	31	320	1500	100	20	6
5082-0810	1.5	2.5	60	140	31	260	1000	80	25	4
5082-0820	0.7	1.5	45	160	31	160	300	30	30	2.5
5082-0821	0.7	1.5	45	160	41	160	300	30	30	2.5
5082-0132	_	1.5*	35		31	175	1000	50	40	_
5082-0243		1.2*	35		31	200	600	40	50	
5082-0830	0.35	1.2	25	200	31	100	300	10	45	1.0
5082-0253		0.6*	25		31	100	200	10	75	_
5082-0835	0.1	0.5	15	350	31	75	100	10	60	0.3
5082-0885	0.1	0.5	15	350	56	75	100	10	60	0.3
Test Conditions	V _R =	MHz = 6 V = 10 V	Ι _R = 10 μΑ	f _C = 1 / 2 π Rs C _j				I _F = 10 mA I _R = 6 mA		As a doubler at midband

RF Tested Diodes at $T_A = 25^{\circ}C$

ELECTRICAL SPECIFICATIONS

	Output		Minimum Output	Capac	ction citance	Vol	down tage - 10 μA	Maximum Thermal			pical tion Time	Typical
Part Number	Frequency,	N	Power, Po[1]	() F)	̈ν	BR V)	Resistance, θic	Package	tı	Charge Level	Lifetime 7
5082-	(GHz)	Order	(W)	Min.	Max.	Min.	Max.	(° C/W)	Outline	(ps)	(pc)	(ns)
0300	2	X 10	2.0	3.2	4.7	75	100	14	40	300	2400	200
0310	6	X 10	0.4	1.6	2.7	40	80	30	41	160	1000	75
0320	10	X 5	0.23	0.35	1.0	25	40	60	41	75	300	25
0335	16	Х8	0.03	0.25	0.5	20	30	75	31	80	100	15

Note

5082-0300 15 W 5082-0320 2 W 5082-0310 4 W 5082-0335 0.65 W

^{1.} Guaranteed multiplier tested results. Input power is:

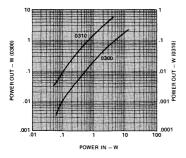


Figure 1. Typical Output Powers vs. Input Power at $T_A=25^{\circ}\,\text{C}$. The 5082-0300 is measured in a x 10 multiplier with P_{IN} at $0.2\,\text{GHz}$ and P_O at $2.0\,\text{GHz}$. The 5082-0310 is measured in a x 10 multiplier with P_{IN} at $0.6\,\text{GHz}$ and P_O at $6.0\,\text{GHz}$.

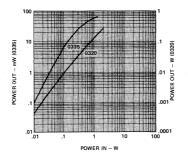


Figure 2. Typical Output Power vs. Input Power at Ta = 25° C. The 5082-0335 is measured in a x 8 multiplier with PIN at 2 GHz and Po at 16 GHz. The 5082-0320 is measured in a x 5 multiplier with PIN at 2.0 GHz and Po at 10 GHz.

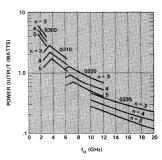


Figure 3. Predicted power output curves for 03XX step recovery diodes in X3, X4, and X5 multiplier applications. These results were obtained using computer optimization programs.

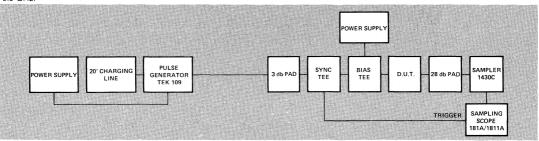


Figure 4. Test circuit for transition time. The pulse generator circuit is adjusted for a 0.5 A pulse when testing 5082-0253, -0335, -0835, and -0885. A pulse of 1.0 A is used for all other diodes. The bias current is adjusted for the specified stored charge level. The transition time is read between the 20% and the 80% points on the oscilloscope.

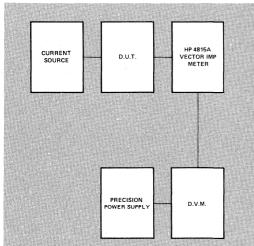


Figure 5. Test set-up for measurement of series resistance. The D.U.T. is forward biased $\langle I_F \rangle$ and the real part of the diode impedance is measured at 100 MHz. The D.V.M. is set up to read the real part on the Vector Voltmeter. The precision power supply is used to offset the test circuit resistance. Rs is measured at $I_F=100$ mA except -0800 where $I_F=500$ mA.

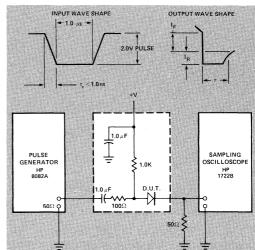
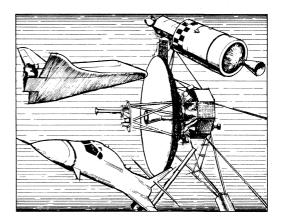
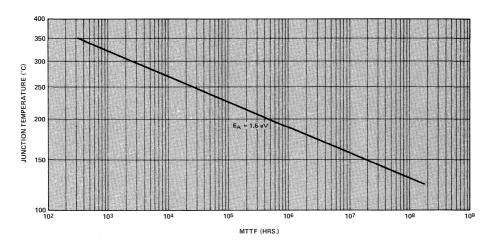


Figure 6. The circuit for measurement of the effective minority carrier lifetime. The value of the reverse current (l_R) is approximately 6 mA and the forward current (l_F) is 10 mA. The lifetime (τ) is measured across the 50% points of the observed wave shape. The input pulse is provided by a pulse generator having a rise time of less than one nanosecond. The output pulse is amplified and observed on a sampling oscilloscope.

Reliability Data for Step Recovery Diodes


RELIABILITY DATA STEP RECOVERY DIODES


Description

For applications requiring component reliability estimation, Hewlett-Packard provides reliability data for all families of devices. Data is initially compiled from reliability tests run prior to market introduction to demonstrate that a product meets design criteria. Additional tests are run periodically. The data on this sheet represents the latest review of accumulated test results.

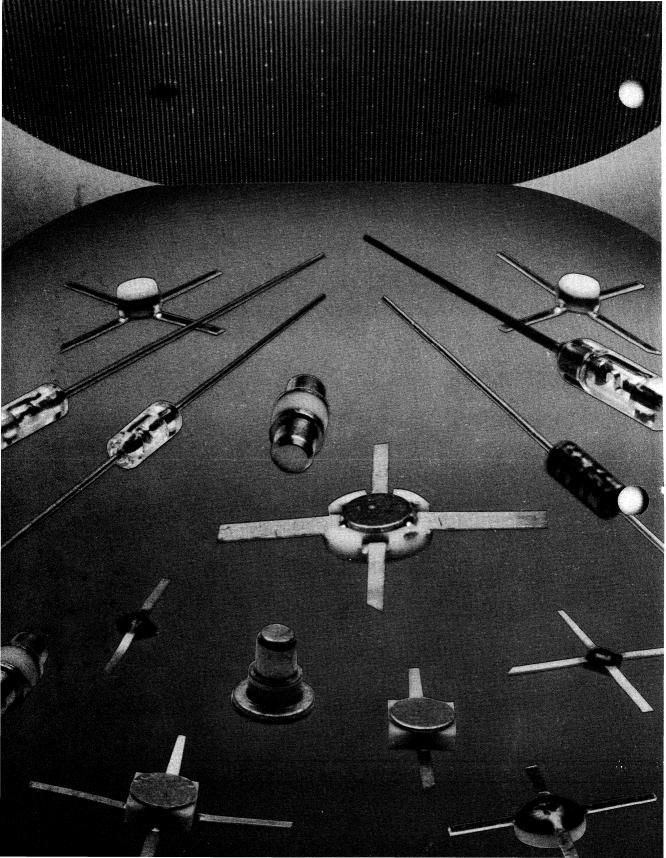
Applications

This information represents the capabilities of the generic device. Failure rates and MTTF values presented here are achievable with normal MIL-S-19500 TX level screening. Reliability can only be guaranteed by testing specified lots of devices, under specified conditions, with specified LTPD levels.

Mean Time To Failure vs. Junction Temperature

Burn-In and Storage

Preconditioning and screening tests are recommended for devices terminating in high reliability equipments. The following results were obtained with preconditioning and screening.


Test	Test Conditions	LTPD/1000 Hours
High Temperature Life	1,000 hrs. min. storage time at 150°C	2
Steady State Operating Life	1,000 hrs. min. operating time at $T_A = 150^{\circ}$ C, $P_{FM} = 175$ mW. $V_{BM} = 12$ V, $f = 60$ Hz, $T_A = 25^{\circ}$ C	3

Environmental

The following cumulative test results have been obtained from reliability testing performed at HP Components Division, in accordance with the latest revisions of Military Semiconductor Specifications MIL-STD-19500, MIL-STD-202 and MIL-STD-750.

Test	MIL-STD-750 Reference	Test Conditions	LTPD
Temperature Cycling	1051.1 Cond. B	5 cycles from -65° C to +150° C, .5 hours at extremes, 5 min. transfer	5
Thermal Shock	1056.1	5 cycles from 0° C to +100° C, 3 sec. transfer	5
Moisture Resistance	1021.1	10 days, 90-98% RH, -10 to +65° C, non-operating	8
Shock	2016.1	5 blows each X ₁ , Y ₁ , Y ₂ , 1500 G. 0.5 msec pulse	10
Vibration Fatigue	2046	32 ± 8 hrs. each X, Y, Z, 96 hr. total, 60 Hz, 20 G min.	10
Vibration Variable Frequency	2056	4, 4 minute cycles each X, Y, Z, at 20 G min. 100 to 2000 Hz	10
Constant Acceleration	2006	1 minute each X ₁ , Y ₁ , Y ₂ , at 20,000 G	10
Terminal Strength	2037.1 Cond. F	Pkg. 32 — 2 lbs. for 3 sec, 120° apart	20
Salt Atmosphere	1041.1	35° fog for 24 hours	20

Integrated Products

INTEGRATED PRODUCTS

SWITCHES MODULATORS LIMITERS MIXERS COMB GENERATORS

PIN DIODE SWITCHES

- Broadband, .1-18 GHz
- 33130 Series Optimized for Low Insertion Loss
- 33140 Series Optimized for Fast Swtiching, 5 ns
- Medium and High Isolation Units Available in Each Series
- Hermetic PIN Diode Modules
- Add-On Driver Available for 33140 Series

DOUBLE BALANCED MIXERS

 Broadband 10534 Series: .05-150 MHz 10514 Series: .2-500 MHz

- Low 1/f Noise, Typically Less than 100 nV per Root Hz
- High Isolation Between Ports
- Wide Range of Package Styles
- "A" Versions: BNC Jacks (Options Available)
- "B" Versions: Pins for PC Mounting
- "C" Versions: Miniature, Pins for PC Mounting
- Hermetically Sealed Schottky Diodes

HMXR-5001 WIDEBAND DOUBLE BALANCED MIXER

- Wideband 2 to 12.4 GHz Usable to 18 GHz
- Wide IF Bandwidth 0.01 to 1.0 GHz
- Good Conversion Loss
 7.5 dB Typical to 8 GHz
 8.5 dB Typical to 12.4 GHz
- Excellent Isolation
 LO-RF: 30 dB Typical
- Rugged Construction
- Hermetically Packaged Diodes

PIN ABSORPTIVE MODULATORS

- 50Ω Match at all Attenuation Levels
- Greater than Octave Band Coverage
- 50ns Switching (10ns Available on Special Request)
- Hermetic PIN Diode Modules

SOOIC SOOK AND THE SOOK AND THE

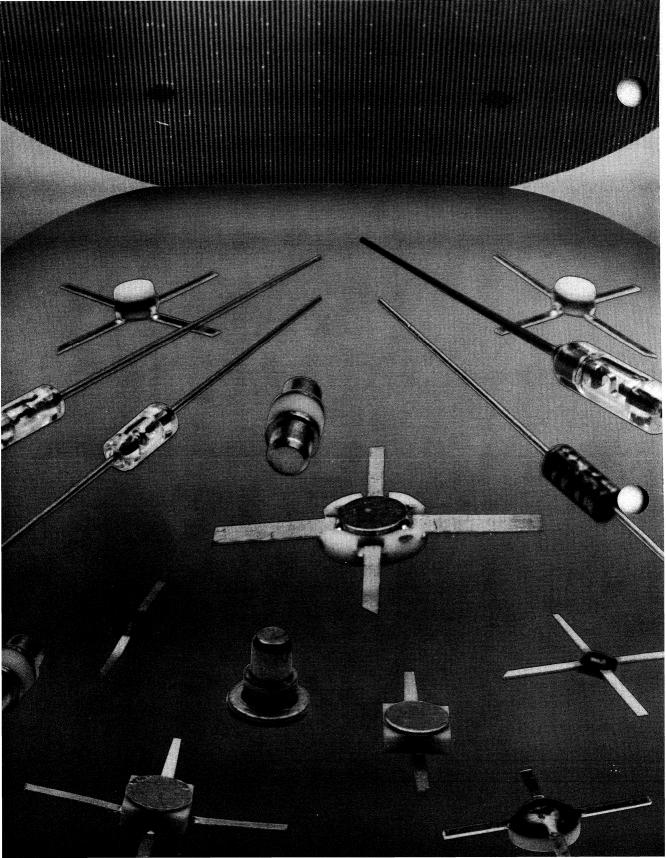
PIN DIODE LIMITERS

- Broadband, .4-12 GHz
- Low Limiting Threshold, 5mW Typical, 8-12 GHz
- Low Insertion Loss, 1.5dB Typical, 8-12 GHz
- Low Leakage, 20mW Typical, 8-12 GHz
- Hermetic PIN Diode Module

33701A — Module

33711A - Module with SMA Connectors

COMB GENERATORS

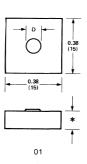

- 100, 250, 500 and 1000 MHz
 Drive Frequencies (Drive
 Frequencies in 50-1500 MHz Range
 Available on Special Request)
- Input Matched to 50 Ω
- Self-biased, no External Bias Required
- Narrow Output Pulses:
 130ps Pulse Width with 10V Amplitude
- Broadband Output Comb Up to 40 GHz Available
- Hermetic Step Recovery Diode Modules

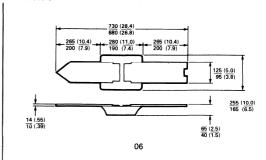
33150A MICROWAVE BIAS NETWORK 0.1-18 GHz

- Wideband
- Low Insertion Loss
- High RF to DC Isolation

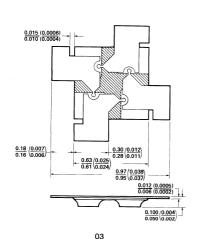
For a copy of the Microwave Integrated Products Catalog (5952-9871D) write: Inquiries Mgr., Hewlett-Packard, 1507 Page Mill Road, Palo Alto, CA 94304.

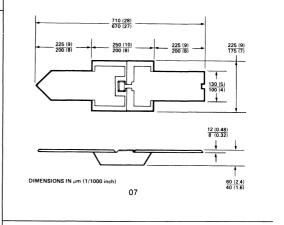
Appendix

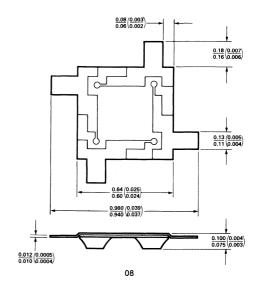

	25	٠k:	1576	• (Эш	flir	16-5											3	П	
																	44			
	Αu	th	or	26	d	Di	Sti	ib	ui	Οľ	a	ПC								
		0 4		4	сп	o r	1776	. T	1		1		7						14	
			91	1/1	S	117		rt.		ffi	ce	Ç.							18	
	was still and the	de de la constante de la const		and the state		saludii aadiii	400000000			Santonii (

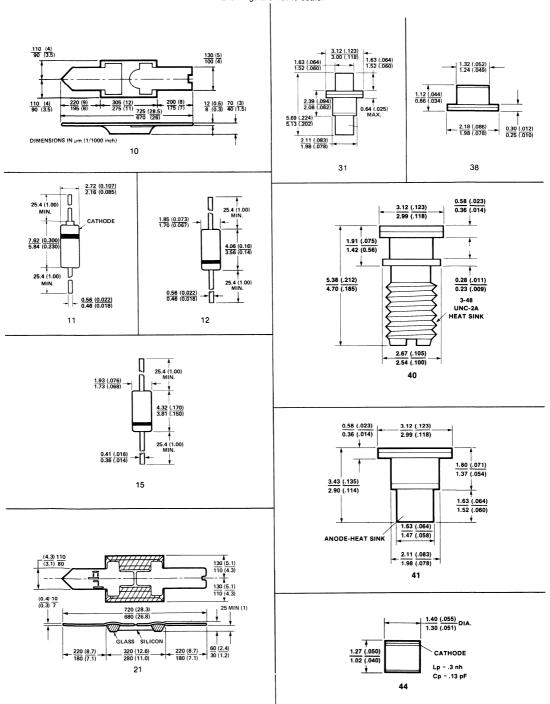

PACKAGE OUTLINES

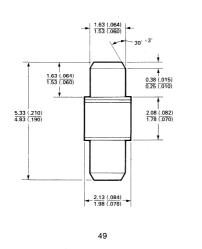
All dimensions in millimeters (inches), except where noted.

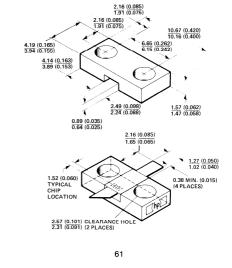

For complete package specifications refer to individual product specification sheets.

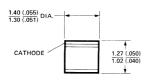

Drawings are not to scale.

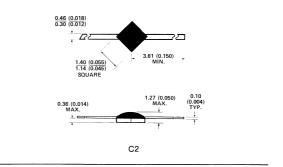


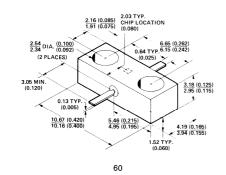

★ See data sheet.

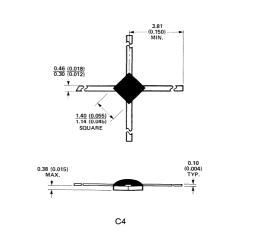


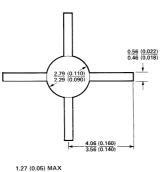

930 (37) 870 (34) 220 (9) 580 (23) 580 (23) 580 (23) 580 (23) 580 (23) 580 (23) 580 (23) 580 (3) 580

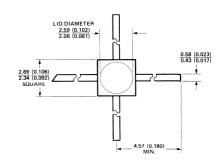


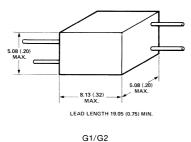


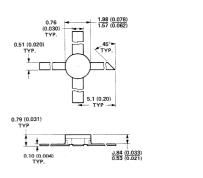

All dimensions in millimeters (inches), except where noted. For complete package specifications refer to individual product specification sheets. Drawings are not to scale.

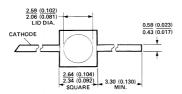


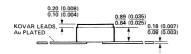


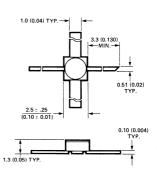



0.13 (0.005) 0.08 (0.003) 0.64 (0.025) MAX


E1

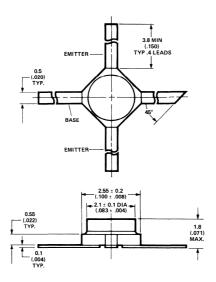



Н4

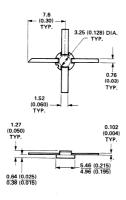


HPAC-70GT

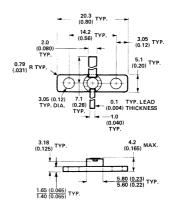
H2



HPAC-100


All dimensions in millimeters (inches), except where noted.

For complete package specifications refer to individual product specification sheets.


Drawings are not to scale.

HPAC-100X

HPAC-200

HPAC-200 GB/GT

Y May 1984

HP Components Authorized Distributor and Representative Directory

United States

Alabama

Hall-Mark Electronics 4900 Bradford Drive Huntsville 35805 (205) 837-8700

Hamilton/Avnet 4812 Commercial Drive Huntsville 35805 (205) 837-7210

Schweber Electronics 2227 Drake Avenue, S.W. Suite 14 Huntsville 35805 (205) 882-2200

Arizona

Hamilton/Avnet 505 South Madison Tempe 85281 (602) 231-5100

Wyle Laboratories Electronics Marketing Group 8155 North 24th Avenue Phoenix 85021 (602) 249-2232 in Tucson (602) 884-7082

California

Hall-Mark Electronics 1110 Ringwood Court San Jose 95131 (408) 946-0900

Hamilton/Avnet 4103 Northgate Blvd. Sacramento 95834 (916) 925-2216

Hamilton/Avnet 4545 Viewridge Avenue San Diego 92123 (619) 571-7510

Hamilton/Avnet 1175 Bordeaux Drive Sunnyvale 94086 (408) 743-3355

Hamilton Electro Sales 3170 Pullman Street Costa Mesa 92626 (714) 641-4166

Hamilton Electro Sales 10950 W. Washington Blvd. Culver City 90230 (213) 558-2121

Schweber Electronics 21139 Victory Boulevard Canoga Park 91303 (213) 999-4702

Schweber Electronics 17822 Gillette Avenue Irvine 92714 (714) 863-0200

Schweber Electronics 1771 Tribute Road Suite B Sacramento 95815 (916) 929-9732

California (cont.)

Schweber Electronics 3110 Patrick Henry Drive Santa Clara 95050 (408) 748-4700

Wyle Laboratories Electronics-Marketing Group 124 Maryland Street El Segundo 90245 (213) 322-8100

Wyle Laboratories Electronics Marketing Group 17872 Cowan Avenue Irvine 92714 (714) 863-1611

Wyle Laboratories Electronics Marketing Group 11151 Sun Center Drive Rancho Cordova 95670 (916) 638-5282

Wyle Laboratories Electronics Marketing Group 9525 Chesapeake Drive San Diego 92123 (619) 565-9171

Wyle Laboratories Electronics Marketing Group 3000 Bowers Avenue Santa Clara 95052 (408) 727-2500

Colorado

Hamilton/Avnet 8765 East Orchard Suite 708 Englewood 80111 (303) 740-1000

Wyle Laboratories Electronics Marketing Group 451 E. 124th Avenue Thornton 80241 (303) 457-9953

Connecticut

Hamilton/Avnet Commerce Drive Commerce Industrial Park Danbury 06810 (203) 797-2800

Schweber Electronics Finance Drive Commerce Industrial Park Danbury 06810 (203) 792-3500

Florida

Hall-Mark Electronics 1671 W. McNab Road Ft. Lauderdale 33309 (305) 971-9280

Hall-Mark Electronics 7648 Southland Blvd. Suite 100 Orlando 32809 (305) 855-4020

Florida (cont.)

Hall-Mark Electronics 15301 Roosevelt Blvd. Suite 303 Clearwater 33520 (813) 530-4543

Hamilton/Avnet Electronics 6801 N.W. 15th Way Ft. Lauderdale 33309 (305) 971-2900

Hamilton/Avnet 3197 Tech Drive North St. Petersburg 33702 (813) 576-3930

Hamilton/Avnet 6947 University Blvd. Winter Park 32792 (305) 628-3888

Schweber Electronics 181 Whooping Loop AltaMonte Springs 32701 (305) 331-7555

Schweber Electronics 2830 N. 28th Terrace Hollywood 33020 (305) 927-0511

Georgia

Hall-Mark Electronics 6410 Atlantic Boulevard Suite 115 Norcross 30071 (404) 447-8000

Hamilton/Avnet 5825 D. Peachtree Corners East Norcross 30092 (404) 447-7507

Schweber Electronics 303 Research Drive Suite 210 Norcross 30092 (404) 449-9170

Illinois

Hall-Mark Electronics 1177 Industrial Drive Bensenville 60106 (312) 860-3800

Hamilton/Avnet 1130 Thorndale Avenue Bensenville 60106 (312) 860-7700

Schweber Electronics 904 Cambridge Drive Elk Grove Village 60007 (312) 364-3750

Indiana

Hamilton/Avnet 485 Gradle Drive Carmel 46032 (317) 844-9333

Pioneer-Standard 6408 Castleplace Drive Indianapolis 46250 (317) 849-7300

iowa

Schweber Electronics 5270 North Park Place N.E. Cedar Rapids 52402 (319) 373-1417

Kansas

Hall-Mark Electronics 10815 Lakeview Drive Lenexa 66219 (913) 888-4747

Hamilton/Avnet 9219 Quivira Road Overland Park 66215

Maryland

Hall-Mark Electronics 6655 Amberton Drive Baltimore 21227 (301) 796-9300

Hamilton/Avnet 6822 Oak Hall Lane Columbia 21045 (301) 995-3500

Schweber Electronics 9330 Gaither Road Gaithersburg 20760 (301) 840-5900

Massachusetts

Hamilton/Avnet 50 Tower Office Park Woburn 01801 (617) 273-7500

Schweber Electronics 25 Wiggins Avenue Bedford 01730 (617) 275-5100

Michigan

Hamilton/Avnet 2215 29th Street S.E. Grand Rapids 49508 (616) 243-8805

Hamilton/Avnet 32487 Schoolcraft Road Livonia 48150 (313) 522-4700

Pioneer-Standard 13485 Stamford Livonia 48150 (313) 525-1800

Schweber Electronics 12060 Hubbard Drive Livonia 48150 (313) 525-8100

Minnesota

Hall-Mark Electronics 7838 12th Avenue, So. Bloomington 55420 (612) 854-3223

Hamilton/Avnet 10300 Bren Road E. Minneapolis 55343 (612) 932-0600

Schweber Electronics 7424 W. 78th Street Edina 55435 (612) 941-5280

Missouri

Hall-Mark Electronics 2662 Metro Blvd. Maryland Heights 63043 (314) 291-5350

Hamilton/Avnet 13743 Shoreline Court Earth City 63045 (314) 344-1200

New Hampshire

Schweber Electronics Bedford Farms, Bldg. 2 Kilton & South River Road Manchester 03102 (603) 625-2250

New Jersev

Hall-Mark Electronics Springdale Business Center 2091 Springdale Road Cherry Hill 08003 (609) 424-7300

Hall-Mark Electronics 116 Fairfield Road Fairfield 07006 (201) 575-4415

Hamilton/Avnet 1 Keystone Avenue Cherry Hill 08003 (609) 424-0100

Hamilton/Avnet 10 Industrial Road Fairfield 07006 (201) 575-3390

Schweber Electronics 18 Madison Road Fairfield 07006 (201) 227-7880

New Mexico

Hamilton/Avnet 2524 Baylor S.E. Albuquerque 87106 (505) 765-1500

New York

Hall-Mark Electronics 1 Comac Loop Ronkonkoma 11779 (516) 737-0600

New York (cont.)

Hamilton/Avnet 16 Corporate Circle East Syracuse 13057 (315) 437-2641

Hamilton/Avnet 5 Hub Drive Melville 11746 (516) 454-6060

Hamilton/Avnet 333 Metro Park Drive Rochester 14623 (716) 475-9130

Schweber Electronics 2 Townline Circle Rochester 14623 (716) 424-2222

Schweber Electronics Jericho Turnpike Westbury 11590 (516) 334-7474

North Carolina

Hall-Mark Electronics 5237 North Boulevard Raleigh 27604 (919) 872-0712

Hamilton/Avnet 3510 Spring Forest Road Raleigh 27604 (919) 878-0810

Schweber Electronics 5285 North Boulevard Raleigh 27604 (919) 876-0000

Ohio

Hall-Mark Electronics 5821 Harper Road Solon 44139 (216) 349-4632

Hall-Mark Electronics 6130 Sunbury Road Westerville 43081 (614) 891-4555

Hamilton/Avnet 4588 Emery Industrial Parkway Cleveland 44128 (216) 831-3500

Hamilton/Avnet 945 Senate Drive Dayton, Ohio 45459 (513) 433-0610

Pioneer-Standard 4800 East 131st Street Cleveland 44105 (216) 587-3600

Pioneer-Standard 4433 Interpoint Boulevard Dayton 45404 (513) 236-9900

Schweber Electronics 23880 Commerce Park Road Beachwood 44122 (216) 464-2970

Ohio (cont.)

Schweber Electronics 7865 Paragon Road Suite 210 Dayton, 45459 (513) 439-1800

Oklahoma

Hall-Mark Electronics 5460 South 103rd E. Avenue Tulsa 74145 (918) 665-3200

Schweber Electronics 4815 S. Sheridan Suite 109 Tulsa 74145 (918) 622-8000

Oregon

Hamilton/Avnet 6024 S.W. Jean Road Bldg. C, Suite 10 Lake Oswego 97034 (503) 635-8831

Wyle Laboratories Electronics Marketing Group 5289 N.E. Elam Young Parkway Suite E-100 Hillsboro 97123 (503) 640-6000

Pennsylvania

Pioneer-Standard 259 Kappa Drive Pittsburg 15238 (412) 782-2300

Schweber Electronics 231 Gibraltar Road Horsham 19044 (215) 441-0600

Schweber Electronics 1000 RIDC Place Suite 203 Pittsburg 15238 (412) 782-1600

Texas

Hall-Mark Electronics 12211 Technology Austin 78759 (512) 258-8848

Hall-Mark Electronics 11333 Pagemill Drive Dallas 75231 (214) 341-1147

Hall-Mark Electronics 8000 Westglen P.O. Box 42190 Houston 77042 (713) 781-6100

Hamilton/Avnet 2401 Rutland Austin 78758 (512) 837-8911

Texas (cont.)

Hamilton/Avnet 3939 Ann Arbor Houston 77063 (713) 780-1771

Hamilton/Avnet 2111 W. Walnut Hill Lane Irving 75062 (214) 659-4111

Schweber Electronics 6300 La Calma Drive Suite 240 Austin 78752 (512) 458-8253

Schweber Electronics 4202 Beltway Drive Dallas 75234 (214) 661-5010

Schweber Electronics 10625 Richmond Avenue Suite 100 Houston 77042 (713) 784-3600

Utah

Hamilton/Avnet 1585 West 21st S. Salt Lake City 84119 (801) 972-2800

Wyle Laboratories Electronics Marketing Group 1959 S. 4130 West Unit B Salt Lake City 84104 (801) 974-9953

Washington

Hamilton/Avnet 14212 N.E. 21st Street Bellevue 98006 (206) 453-5844

Wyle Laboratories Electronics Marketing Group 1750 132nd Avenue, N.E. Bellevue 98005 (206) 453-8300

Wisconsin

Hall-Mark Electronics 9625 South 20th Street Oakcreek 53154 (414) 761-3000

Hamilton/Avnet 2975 Moorland Road New Berlin 53151 (414) 784-4510

Schweber Electronics 150 S. Sunnyslope Suite 120 Brookfield 53005 (414) 784-9020

International

Australia

STC-Cannon Components Pty. Ltd. Gabba Towers 411 Volture Street Woolloongabba, Qld. 4102 (61) 07 393-0377 (61) 07 393-0595

Australia (cont.)

STC-Cannon Components Pty. Ltd. 605 Gardeners Road Mascot, New South Wales 2020 (61) 02 693 1666

STC-Cannon Components Pty. Ltd. 248 Wickham Road Moorabbin Victoria 3189 (61) 03 555 0566

Australia (cont.)

STC-Cannon Components Pty. Ltd. 396 Scarborough Beach Road Osborne Park Western Australia 6017 (61) 09 444 0211

VSI Electronics Pty. Ltd. Office 8 116 Melbourne Street North Adelaide South Australia 5006 (61) 08 267 4848

Australia (cont.)

VSI Electronics Pty. Ltd. 11th Floor United Dominion Building 127 Creek Street Brisbane, Queensland 4000 (61) 07 229 8827

VSI Electronics Pty. Ltd. Suite 3 118 Church Street Hawthorn, Victoria 3122 (61) 03 819 5044

Australia (cont.)

VSI Electronics Pty. Ltd. Unit 1 25 Brisbane Street East Perth, W.A. 6000 (61) 09 328 8499

VSI Electronics Pty. Ltd. 16 Dickson Avenue Artarmon, N.S.W. 20 (61) 02 439 8622

Austria

Transistor V.m.b.H Auhofstr. 41a A-1130 Wien (43) 222 829451 (43) 222 829404

Belgium

Diode Belgium Luchtschipstraat/Rue De L'Aeronef 2 1140 Brusselss (32) 2 216 2100

Brazil

Datatronix Electronica LTDA Av. Pacaembu, 746-Cll Sao Paulo (55) 11 8260111

Canada

Hamilton/Avnet Electronics Ltd. 6845 Rexwood Drive Units 3, 4 & 5 Mississauga, Ontario L4V 1R2 (416) 677-7432

Hamilton/Avnet Electronics Ltd. 2670 Sabourin Street St. Laurent Montreal, Quebec H4S 1M2 (514) 331-6443

Hamilton/Avnet Electronics Ltd. 210 Colonnade Road Nepean, Ontario K7E 7J5 (613) 226-1700

Zentronics, Ltd. 8 Tilbury Court Brampton, Ontario L6T 3T4 (416) 451-9600

Zentronics, Ltd. Bay #1 3300 14th Avenue, N.E. Calgary, Alberta T2A 6J4 (403) 272-1021

Zentronics, Ltd. 155 Colonnade Road Units 17 & 18 Nepean, Ontario K2E 7K1 (613) 226-8840

Zentronics, Ltd. 505 Locke Street St. Laurent Montreal, Quebec H4T 1X7 (514) 735-5361

Zentronics, Ltd. Unit 108 11400 Bridgeport Road Richmond, B.C. V6X 1T2 (604) 273-5575

Zentronics, Ltd. 546 Weber Street North Unit 10 Waterloo, Ontario N2L 5C6 (519) 884-5700

Zentronics, Ltd. 590 Berry Street Winnipeg, Manitoba R3H OS1 (204) 775-8661

Denmark

Interelko A.P.S. SILOVEJ 2690 Karlslunde (45) 3 140700

Finland

Veneentekijantie 18 00210 Helsinki 21 (358) 0 6922 577

France

Almex Zone Industrielle d'Antony 48, rue de l'Aubepine 92160 Antony (33) 1 6662112

F. Feutrier 8, Benoit Malon 92150 Surensnes (33) 1 7724646

F. Feutrier Rue de Trois Glorievses 42270 St. Priest En Jarez (33) 77 7746733

S.C.A.I.B. 80 rue d'Arcueil Zone Silic 94150 Rungis (33) 1 6872313

Germany

Distron GmbH Behaimstr. 3 D-1000 Berlin 10 (49) 30 3421041

EBV Elektronik Oberweg 6 D-8025 Unterhaching (49) 89 611051

Ingenieurbuero Dreyer Flensburger Strasse 3 D-2380 Schleswig (49) 4621 23121

Jermyn GmbH Postfach 1180 D-6277 Camberg (49) 6434 230

SASCO GMbH D-8011 Putzbrunn Hermann-Oberth-StraBe 16 Munich (49) 89 46111

Hong Kong

CET LTD. 1402 Tung Wah Mansion 199-203 Hennessy Road Wanchai (852) 5 729376

India

Blue Star Ltd. (REP) Sabri Complex II Floor 24 Residency Road Bangalore 560 025 Tel: 55660

Blue Star Ltd. (REP) Sahas 414/2 Vir Savarkar Marg Prabhadevi Bombay 400 025 Tel: 422-6155

Blue Star Ltd. (REP) Bhandari House, 7th/8th Floors 91 Nehru Place New Delhi 110 024 Tel: 682547

Israel

Motorola Israel Ltd. Electronics and Engineering 16 Kremenetski Street P.O. Box 25016 Tel Aviv 67899 (972) 3 338973

Italy

Celdis Italiana S.p.A.
Via F. LL Gracchi, 36
20092 Cinisello Balsamo
Milano
(39) 2 6120041

Eledra S.p.A.
Viale Elvezia 18
20154 Milano
(39) 2 349751

Japan

Ryoyo Electric Corporation Meishin Building 1-20-19 Nishiki Naka-Ku, Nagoya, 460 (81) 52 2030277

Ryoyo Electric Corporatio Taiyo Shoji Building 4-6 Nakanoshima Kita-Ku, Osaka, 530 (81) 6 4481631

Ryoyo Electric Corporation Konwa Building 12-22 Tsukiji, 1-Chome Chuo-Ku, Tokyo (81) 3 543771

Tokyo Electron Company, Ltd. Sinjuku-Nomura Building Tokyo 160 (81) 3 3434411

Korea

Samsung Electronics Co., Ltd. Industrial Products Division 76-561 Yeoksam-Dong Kangnam-Ku Seoul (82) 2 555 7555

Netherlands

Koning en Hartman Elektrotechniek BV Koperwerf 30 2544 EN Den Haag (31) 70 210101

New Zealand

VSI Electronics Pty. Ltd. 123 Manukau Road Epsom, Auckland (64) 97686042

VSI Electronics Pty. Ltd. P.O. Box 11145 Wellington (64) 4848922

VSI Electronics Pty. Ltd. 295 Cashel Street Christchurch (64) 60928

Norway

HEFRO Teknisk A/S P.O. Box 6596, Rodeloekka Oslo 5 (47) 2 380286

Singapore

Dynamar International Ltd. Suite 05-11 12, Lorong Bakar Batu Kolam Ayer Industrial Estate Singapore 1334 (65) 747-6188

So. Africa

Advanced Semiconductor Devices (Pty) Ltd. P.O. Box 2944 Johannesburgh 2000, S.A. (27) 11 802-58204

Spain

Diode Espana Avda. Brasil 5, 1st Planta Madrid 20 (34) 1 455 3686

Sweden

TRACO AB Box 103 123 22 Farsta (46) 8132160

Switzerland

Baerlocher AG Foerrlibuckstrasse 110 CH-8037 Zuerich (41) 1 429900

Fabrimex Ag Kirchenweg 5 CH-8032 Zuerich (41) 1 251-2929

United Kingdom

Celdis Ltd. 37-39 Loverock Road Reading, Berkshire RG3 1ED (44) 734 585171

Jermyn-Mogul Distribution Vestry Estate Otford Road Sevenoaks, Kent TN14 5EU (44) 732 450144

macro Marketing Ltd. Burnham Lane Slough, Berkshire SL1 6LN (44) 628 64422

Farnell Electronic Components Ltd. Canal Road Leeds LS12 2TU (44) 532-636311

Yugoslavia

Elektrotehna N. Sol. O. Tozd Elzas N. Sol. O. Titova 81 61001 Ljubljana (38) 61 347749 (38) 61 347841

Arranged alphabetically by country

Product Line Sales/Support Key

Key Product Line

A Analytical

CM Components

C Computer Systems Sales only

CH Computer Systems Hardware Sales and Services

CS Computer Systems Software Sales and Services
E Electronic Instruments & Measurement Systems

M Medical Products

MP Medical Products Primary SRO

MS Medical Products Secondary SRO

P Personal Computation Products

Sales only for specific product line

Support only for specific product line

IMPORTANT: These symbols designate general product line capability. They do not insure sales or support availability for all products within a line, at all locations. Contact your local sales office for information regarding locations where HP support is available for specific products.

HP distributors are printed in italics.

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarters offices.

NORTH/CENTRAL AFRICA Hewlett-Packard S.A.

7, Rue du Bois-du-Lan CH-1217 MEYRIN 2, Switzerland Tel: (022) 83 12 12 Telex: 27835 hpse Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd. 6th Floor, Sun Hung Kai Centre 30 Harbour Rd. G.P.O. Box 795

G.P.O. Box 795

Tel: 5-832 3211 After Jan. 1, 1984 47th Floor, China Resources Bldg. 26 Harbour Rd., Wanchai HONG KONG

Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG

CANADA

Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive MISSISSAUGA, Ontario L4V 1M8 Tel: (416) 678-9430 Telex: 610-492-4246

EASTERN EUROPE Hewlett-Packard Ges.m.b.h.

Lieblgasse 1 P.O.Box 72 A-1222 VIENNA, Austria Tel: (222) 2365110

Telex: 1 3 4425 HEPA A

NORTHERN EUROPE
Hewlett-Packard S A

Uilenstede 475 P.O.Box 999 NL-1180 AZ AMSTELVEEN The Netherlands Tel: 20 437771

SOUTH EAST EUROPE

Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 83 12 12
Telex: 27835 hpse
Cable: HEWPACKSA Geneve

OTHER EUROPE

Hewlett-Packard S.A. P.O. Box 150, Rte du Nant-D'Avril CH-1217 MEYRIN 2, Switzerland Tel: (022) 83 8111 Telex: 22486 hpsa Cable: HEWPACKSA Geneve

MEDITERRANEAN AND

MIDDLE EAST
Hewlett-Packard S.A.
Mediterranean and Middle East
Operations
Atrina Centre

32 Kifissias Ave. Paradissos-Amarousion, ATHENS Greece

Tel: 682 88 11 Telex: 21-6588 HPAT GR Cable: HEWPACKSA Athens

EASTERN USA

Hewlett-Packard Co. 4 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 258-2000

MIDWESTERN USA

Hewlett-Packard Co. 5201 Tollview Drive ROLLING MEADOWS, IL 60008 Tel: (312) 255-9800

SOUTHERN USA

Hewlett-Packard Co. 2000 South Park Place P.O. Box 105005 ATLANTA, GA 30348 Tel: (404) 955-1500

WESTERN USA

Hewlett-Packard Co. 3939 Lankershim Blvd. P.O. Box 3919 LOS ANGELES, CA 91604 Tel: (213) 506-3700

OTHER INTERNATIONAL AREAS

Hewlett-Packard Co. Intercontinental Headquarters 3495 Deer Creek Road PALO ALTO, CA 94304 Tel: (415) 857-1501 Telex: 034-8300 Cable: HEWPACK **ANGOLA**

Telectra Empresa Técnica de Equipamentos R. Barbosa Rodrigues, 41-1 DT. Caixa Postal 6487 LUANDA Tel: 35515,35516

,P

ARGENTINA

Hewlett-Packard Argentina S.A. Avenida Santa Fe 2035 Martinez 1640 BUENOS AIRES Tel: 798-5735, 792-1293 Telex: 17595 BIONAR Cable: HEWPACKARG A,E,CH,CS,P

Biotron S.A.C.I.M. e I. Av Paseo Colon 221, Piso 9 1399 BUENOS AIRES Tel: 30-4846, 30-1851 Telex: 17595 BIONAR

AUSTRALIA

Adelaide, South Australia Office

Hewlett-Packard Australia Ltd. 153 Greenhill Road PARKSIDE, S.A. 5063 Tel: 272-5911 Telex: 82536 Cable: HEWPARD Adelaide A*,CH.CM,E,MS,P

Brisbane, Queensland Office

Hewlett-Packard Australia Ltd. 10 Payne Road THE GAP, Queensland 4061 Tel: 30-4133 Telex: 42133 Cable: HEWPARD Brisbane A,CH,CM,E,M,P

Canberra, Australia Capital Territory Office

Hewlett-Packard Australia Ltd. 121 Wollongong Street FYSHWICK, A.C.T. 2609 Tel: 80 4244 Telex: 62650 Cable: HEWPARD Canberra CH.CM.E.P

Melbourne, Victoria Office Hewlett-Packard Australia Ltd.

Televiert-Packard Australia Ltd 31-41 Joseph Street BLACKBURN, Victoria 3130 Tel: 895-2895 Telex: 31-024 Cable: HEWPARD Melbourne A,CH,CM,CS,E,MS,P

Perth, Western Australia Office

Hewlett-Packard Australia Ltd. 261 Stirling Highway CLAREMONT, W.A. 6010 Tei: 383-2188 Telex: 93859 Cable: HEWPARD Perth A.CH.CM.E.MS.P Sydney, New South Wales Office

Office
Hewlett-Packard Australia Ltd.
17-23 Talavera Road
P.O. Box 308
NORTH RYDE, N.S.W. 2113
Telex: 21561
Cable: HEWPARD Sydney
A.CH.CM.CS.E.MS.P

AUSTRIA

Hewlett-Packard Ges.m.b.h. Grottenhofstrasse 94 A-8052 GRAZ Tel: (0316) 291 5 66 Telex: 32375 CH,E Hewlett-Packard Ges.m.b.h.

Lieblgasse 1 P.O. Box 72 A-1222 VIENNA Tel: (0222) 23 65 11-0 Telex: 134425 HEPA A A,CH,CM,CS,E,MS,P

BAHRAIN

Green Salon P.O. Box 557 Manama BAHRAIN Tel: 255503-255950 Telex: 84419 P

Wael Pharmacy P.O. Box 648 BAHRAIN Tel: 256123 Telex: 8550 WAEL BN F.C.M.

BELGIUM

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 BRUSSELS Tel: (02) 762-32-00 Telex: 23-494 paloben bru A.CH.CM.CS.E.MP.P

BRAZI

Hewlett-Packard do Brasil I.e.C. Ltda.
Alameda Rio Negro, 750
Alphaville
06400 BARUERI SP
Tel: (011) 421.1311
Telex: (011) 3372 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P
Hewlett-Packard do Brasil I.e.C. Ltda.
Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ

Tel: (02l) 286.0237 Telex: 021-21905 HPBR-BR Cable: HEWPACK Rio de Janeiro A,CH,CM,E,MS,P* ANAMED I.C.E.I. LIda.

Rua Bage, 1.6.E.T. Ctga. 04012 **SAO PAULO** Tel: (011) 570-5726 Telex: 021-21905 HPBR-BR M

ppendix

SALES & SUPPORT OFFICES

Arranged alphabetically by country

CANADA

Alberta Hewlett-Packard (Canada) Ltd. 3030 3rd Avenue N.E. CALGARY, Alberta T2A 6T7

Tel: (403) 235-3100 A,CH,CM,E*,MS,P* Hewlett-Packard (Canada) Ltd. 11120A-178th Street EDMONTON, Alberta T5S 1P2 Tel: (403) 486-6666

British Columbia Hewlett-Packard (Canada) Ltd. 10691 Shellbridge Way

A,CH,CM,CS,E,MS,P

RICHMOND, British Columbia V6X 2W7 Tel: (604) 270-2277 Telex: 610-922-5059 A,CH,CM,CS,E*,MS,P*

Manitoba

Hewlett-Packard (Canada) Ltd. 380-550 Century Street WINNIPEG, Manitoba R3H 0Y1 Tel: (204) 786-6701 A.CH.CM.E.MS.P*

Nova Scotia Hewlett-Packard (Canada) Ltd. P.O. Box 931 900 Windmill Road

DARTMOUTH, Nova Scotia B2Y 3Z6
Tel: (902) 469-7820
CH.CM.CS.E*,MS.P*

Ontario

Hewlett-Packard (Canada) Ltd. 3325 N. Service Rd., Unit 6 BURLINGTON, Ontario P3A 2A3 Tel: (416) 335-8644 CS,M*

Hewlett-Packard (Canada) Ltd. 552 Newbold Street LONDON, Ontario N6E 2S5 Tel: (519) 686-9181 A,CH,CM,E*,MS,P* Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive

Tel: (416) 678-9430 A,CH,CM,CS,E,MP,P Hewlett-Packard (Canada) Ltd. 2670 Queensview Dr. OTTAWA, Ontario K2B 8K1 Tel: (613) 820-6483 A,CH,CM,CS,E*,MS,P*

MISSISSAUGA, Ontario L4V 1M8

Hewlett-Packard (Canada) Ltd. 220 Yorkland Blvd., Unit #11 WILLOWDALE, Ontario M2J 1R5 Tel: (416) 499-9333 CH

Quebec

Hewlett-Packard (Canada) Ltd. 17500 South Service Road Trans-Canada Highway KIRKLAND, Ouebec H9J 2M5 Tel: (514) 697-4232 A.CH.GM.CS.E.MP.P* Hewlett-Packard (Canada) Ltd. Les Galeries du Vallon 2323 Du Versont Nord STE. FOY, Ouebec G1N 4C2 Tel: (418) 687-4570 CH

CHILE

Jorge Calcagni y Cia. Ltda. Av. Italia 634 Santiago Casilia 16475 SANTIAGO 9 Tel: 222-0222 Telex: Public Booth 440001 A,CM,E,M

Olympia (Chile) Ltda.
Av. Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tel: (02) 22 55 044
Telex: 240-565 OLYMP CL
Cable: Olympiachile Santiagochile
CH,CS,P

CHINA, People's Republic of China Hewletl-Reckard Rep. Office P.O. Box 418 1A Lane 2, Luchang St. Beijwei Rd., Xuanwu District BEUING Tel: 33-1947, 33-7426 Telex: 22601 CTSHP CN

Cable: 1920 A,CH,CM,CS,E,P COLOMBIA Instrumentación

H. A. Langebaek & Kier S.A. Carrera 4A No. 52A-26 Apartado Aereo 6287 BOGOTA 1, D.E. Tel: 212-1466 Telex: 44400 INST CO Cable: AARIS Bogota CM.E.M

Casa Humboldt Ltda. Carrera 14, No. 98-60 Apartado Aereo 51283 BOGOTA 1, D.E. Tel: 256-1686 Telex: 45403 CCAL CO.

COSTA RICA

Cientifica Costarricense S.A. Avenida 2, Calle 5 San Pedro de Montes de Oca Apartado 10159 SAN JOSE Tel: 24-38-20, 24-08-19 Telex: 2367 GALGUR CR

CYPRUS

Telerexa Ltd. P.O. Box 4809 14C Stassinos Avenue NICOSIA Tel: 62698 Telex: 2894 LEVIDO CY

DENMARK Hewlett-Packard A/S

Datavej 52 DK-3460 BIRKEROD Tel: (02) 81-66-40 Telex: 37409 hpas dk A,CH,CM,CS,E,MS,P Hewlett-Packard A/S Rolighedsvej 32 DK-8240 RISSKOV, Aarhus Tel: (06) 17-60-00 Telex: 37409 hpas dk CH,E DOMINICAN REPUBLIC

Microprog S.A. Juan Tomás Mejía y Cotes No. 60 Arroyo Hondo SANTO DOMINGO Tel: 565-6268

Telex: 4510 ARENTA DR (RCA) P

ECUADOR CYEDE Cia. Ltda.

Hospitalar S.A.

Avenida Eloy Alfaro 1749 Casilla 6423 CCI QUITO Tel: 450-975, 243-052 Teles: 2548 CYEDE ED CME P.

Robles 625 Casilla 3590 **QUITO** Tel: 545-250, 545-122 Telex: 2485 HOSPTL ED Cable: HOSPITALAR-Quito

EGYPT

International Engineering Associates 24 Hussein Hegazi Street Kasr-el-Aini CAIRO Tel: 23829, 21641 Telex: IEA UN 93830

Telex: IEA ON 93830 CH,CS,E,M EGYPOR P.O.Box 2558 42 El Zahraa Street CAIRO, Egypt Tel: 65 00 21 Telex: 93 337

EL SALVADOR IPESA de El Salvador S.A. 29 Avenida Norte 1216 SAN SALVADOR Tel: 26-6858, 26-6868 Telex: 20539 IPESASAL

FINLAND

Hewlett-Packard Oy Revontulentie 7 PL 24 SF-02101 ESPO0 10 Tel: (90) 4550211 Telex: 121563 hewpa sf CH,CM,CS,P

Hewlett-Packard Oy (Olarinluoma 7) PL 24 02101 ESPOO 10 Tel: (90) 4521022 A,E,MS

Hewlett-Packard Oy Aatoksenkatv 10-C SF-40720-72 JYVASKYLA Tel: (941) 216318 CH

Hewlett-Packard Oy Kainvuntie 1-C SF-90140-14 **OULU** Tel: (981) 338785 FRANCE Hewlett-Packard France 7 I Mercure B Rue Berthelot F-13763 Les Milles Cedex AIX-EN-PROVENCE Tel: 16 (42) 59-41-02 Telex: 410770F A.CH.E.MS.P Hewlett-Packard France 64, rue Marchand Saillant F-61000 ALENCON Tel: 16 (33) 29 04 42 Hewlett-Packard France Boite Postale 503 F-25026 BESANCON 28 rue de la Republique F-25000 BESANCON Tel: 16 (81) 83-16-22 CH,M Hewlett-Packard France

13, Place Napoleon III
F-29000 BREST
Tel: 16 (98) 03-38-35
Hewlett-Packard France
Chemin des Mouilles
Boite Postale 162
F-69130 ECULLY Cedex (Lyon)
Tel: 16 (78) 833-81-25
Telex: 310617F
A,CH,CS,E,MP
Hewlett-Packard France
Tour Lorraine
Boulevard de France

Tour Lorraine
Boulevard de France
F-91035 EVRY Cedex
Tel: 16 6 077-96-60
Telex: 692315F
E

Hewlett-Packard France Parc d'Activite du Bois Briard Ave. du Lac F-91040 EVRY Cedex Tel: 16 6 077-8383 Telex: 692315F E

Hewlett-Packard France 5, avenue Raymond Chanas F-38320 EVBENS (Grenoble) Tel: 16 (76) 25-81-41 Telex: 980124 HP GRENOB EYBE CH

Hewlett-Packard France
Centre d'Affaire Paris-Nord
Bâtiment Ampère 5 étage
Rue de la Commune de Paris
Boite Postale 300
F-93153 LE BLANC MESNIL
Tel: 16 (1) 865-44-52
Telex: 211032F
CH,CS,E,MS
Hewlett-Packard France
Parc d'Activités Cadera
Quartier Jean Mermoz
Avenue du Président JF Kennec

Parc d'Activités Cadera Quartier Jean Mermoz Avenue du Président JF Kennedy F-33700 MERIGMAC (Bordeaux) Tel: 16 (56) 34-00-84 Telex: 550105F CH,E,MS Hewlett-Packard France

Immueble "Les 3 B" Nouveau Chemin de la Garde ZAC de Bois Briand F-44085 NANTES Cedex Tel: 16 (40) 50-32-22 CH**

Arranged alphabetically by country

FRANCE (Cont'd) Hewlett-Packard France 125, rue du Faubourg Bannier F-45000 ORLEANS Tel: 16 (38) 68 01 63 Hewlett-Packard France Zone Industrielle de Courtaboeuf Avenue des Tropiques F-91947 Les Ulis Cedex ORSAY Tel: (6) 907-78-25 Telex: 600048F A,CH,CM,CS,E,MP,P Hewlett-Packard France Paris Porte-Maillot 15, Avenue de L'Amiral Bruix F-75782 PARIS CEDEX 16 Tel: 16 (1) 502-12-20 Telex: 613663F CH MS P

124, Boulevard Tourasse F-64000 PAU Tel: 16 (59) 80 38 02 Hewlett-Packard France 2 Allée de la Bourgonnette F-35100 RENNES Tel: 16 (99) 51-42-44 Telex: 740912F CH.CM.E.MS.P*

Hewlett-Packard France

Hewlett-Packard France 98 Avenue de Bretagne F-76100 ROUEN Tel: 16 (35) 63-57-66 CH**,CS

Hewlett-Packard France 4 Rue Thomas Mann Boite Postale 56 F-67033 STRASBOURG Cedex Tel: 16 (88) 28-56-46 Telex: 890141F CH.E.MS.P*

Hewlett-Packard France Le Péripole 20, Chemin du Pigeonnier de la Cépière F-31083 **TOULOUSE** Cedex Tei: 16 (61) 40-11-12 Telex: 531639F A CH CS F P*

Hewlett-Packard France 9, rue Baudin F-26000 VALENCE Tel: 16 (75) 42 76 16 Hewlett-Packard France

Carolor ZAC de Bois Briand F-57640 VIGY (Metz) Tel: 16 (8) 771 20 22

Hewlett-Packard France Immeuble Péricentre F-59658 VILLENEUVE D'ASCQ Cedex Tel: 16 (20) 91-41-25 Telex: 160124F CH.E.MS.P*

GERMAN FEDERAL REPUBLIC

Hewlett-Packard GmbH Geschäftsstelle Keithstrasse 2-4 D-1000 BERLIN 30 Tel: (030) 24-90-86 Telex: 018 3405 hpbin d A.CH.E.M.P Hewlett-Packard GmbH Geschäftsstelle Herrenberger Strasse 130 D-7030 BOBLINGEN Tel: (7031) 14-0 Telex: A,CH,CM,CS,E,MP,P

Hewlett-Packard GmbH Geschäftsstelle Emanuel-Leutze-Strasse 1 D-4000 DUSSELDORF Tel: (0211) 5971-1 Telex: 085/86 533 hpdd d A,CH,CS,E,MS,P

Hewlett-Packard GmbH Geschäftsstelle Schleefstr. 28a D-4600 DORTMUND-Aplerbeck

Tel: (0231) 45001 Hewlett-Packard GmbH Vertriebszentrale Frankfurt Berner Strasse 117 Postfach 560 140 D-6000 FRANKFURT 56 Tel: (0611) 50-04-1 Telex: 04 13249 hpffm d

A,CH,CM,CS,E,MP,P Hewlett-Packard GmbH Geschäftsstelle Aussenstelle Bad Homburg Louisenstrasse 115 D-6380 RAD HOMBURG

Tel: (06172) 109-0 Hewlett-Packard GmbH Geschäftsstelle Kapstadtring 5 D-2000 HAMBURG 60 Tel: (040) 63804-1 Telex: 021 63 032 hphh d A.CH.CS.E.MS.P

Hewlett-Packard GmbH Geschäftsstelle Heidering 37-39 D-3000 HANNOVER 61 Tele: (0511) 5706-0 Telex: 092 3259 A,CH,CM,E,MS,P Hewlett-Packard GmbH Geschäftsstelle Rosslauer Weg 2-4 D-6800 MANNHEIM Tel: (0621) 70050

A,C,E
Hewlett-Packard GmbH
Geschäftsstelle
Messerschmittstrasse 7
D-7910 NEU ULM
Tel: 0731-70241
Telex: 0712816 HP ULM-D

Telex: 0462105

A,C,E*
Hewlett-Packard GmbH
Geschäftsstelle
Ehhericherstr. 13
D-8500 NÜRNBERG 10
Tel: (0911) 5205-0
Telex: 0623 860
CH,CM,E,MS,P
Hewlett-Packard GmbH

Geschäftsstelle Eschenstrasse 5 D-8028 TAUFKIRCHEN Tel: (089) 6117-1 Telex: 0524985 A,CH,CM,E,MS,P GREAT BRITAIN
See United Kingdom

GREECE
Kostas Karaynnis S.A.
8 Omirou Street
ATHENS 133
Tel: 32 30 303, 32 37 371
Telex: 215962 RKAR GR
A.CH.CM.CS.E.M.P
PLAISIO S.A.
G. Gerardos
24 Stournara Street

Telex: 221871 P GUATEMALA

Tel: 36-11-160

ATHENS

IPESA Avenida Reforma 3-48, Zona 9 GUATEMALA CITY Tel: 316627, 314786 Telex: 4192 TELTRO GU A.CH.CM.CS.E.M.P

HONG KONG Hewlett-Packard Hong Kong, Ltd. G.P.O. Box 795 5th Floor, Sun Hung Kai Centre 30 Harbour Road HONG KONG Tei: 5-8323211

Telex: 66678 HEWPA HX
Cable: HEWPACK HONG KONG
ECHLCS,
CHCS,P
CET Ltd.
1402 Tung Wah Mansion
199-203 Hennessy Rd.
Wanchia, HONG KONG
Tel: 5-729376
Telex: 85 t48 CET HX

Schmidt & Co. (Hong Kong) Ltd. Wing On Centre, 28th Floor Connaught Road, C. HONG KONG Tel: 5-455644 Telex: 74766 SCHMX HX

ICELAND

Elding Trading Company Inc. Hafnarnvoli-Tryggvagotu P.O. Box 895 IS-REYKJAVIK Tel: 1-58-20, 1-63-03

INDIA

Computer products are sold through Blue Star Ltd. All computer repairs and maintenance service is done through Computer Maintenance Corp.

Blue Star Ltd.
Sabri Complex II Floor
24 Residency Rd.
BANGALORE 560 025
Tel: 55660
Telex: 0845-430
Cable: BLUESTAR
A.CH': OM.CS'-E

Blue Star Ltd. Band Box House Prabhadevi BOMBAY 400 025 Tel: 422-3101 Telex: 011-3751 Cable: BLUESTAR A,M Blue Star Ltd.

Sahas
414/2 Vir Savarkar Marg
Prabhadevi
BOMBAY 400 025
Tel: 422-6155
Telex: 011-4093
Cable: FROSTBLUE
A,CH: OM.CS: E.M.

Blue Star Ltd.
Kalyan, 19 Vishwas Colony
Alkapuri, BORODA, 390 005
Tel: 65235
Cable: BLUE STAR

A
Blue Star Ltd.
7 Hare Street
CALCUTTA 700 001
Tel: 12-01-31
Telex: 021-7655
Cable: BLUESTAR

Blue Star Ltd. 133 Kodambakkam High Road MADRAS 600 034 Tel: 82057

Tel: 82057 Telex: 041-379 Cable: BLUESTAR A,M Blue Star Ltd.

Bhandari House, 7th/8th Floors 91 Nehru Place NEW DELHI 110 024 Tel: 682547 Telex: 031-2463 Cable: BLUESTAR A,CH*,CM,CS*,E,M Blue Stat Ltd.

15/16:C Wellesley Rd. PUNE 411 011 Tel: 22775 Cable: BLUE STAR

Blue Star Ltd. 2-2-47/1108 Bolarum Rd. SECUNDERABAD 500 003 Tel: 72057 Telex: 0155-459 Cable: BLUEFROST

T.C. 7/603 Poornima Maruthankuzhi TRIVANDRUM 695 013 Tel: 65799

Blue Star Ltd.

Tel: \$5799
Telex: 0884-259
Cable: BLUESTAR
E
Computer Maintenance Corporation
Ind

115, Sarojini Devi Road **SECUNDERABAD** 500 003 Tel: 310-184, 345-774 Telex: 031-2960

Arranged alphabetically by country

INDONESIA BERCA Indonesia P.T. P.O.Box 496/Jkt Jl. Abdul Muis 62 JAKARTA Tel: 21-373009

Telex: 46748 BERSAL IA Cable: BERSAL JAKARTA BERCA Indonesia P.T.

P.O.Box 2497/Jkt

Antara Bldg., 17th Floor Jl. Medan Merdeka Selatan 17 JAKARTA-PUSAT Tel: 21-344-181 Telex: BERSAL IA A.CS.E.M BERCA Indonesia P.T. P.O. Box 174/SBY Jl. Kutei No. 11 SURABAYA Tel: 68172 Telex: 31146 BERSAL SB

Cable: BERSAL-SURABAYA

A. FMP

Hewlett-Packard Trading S.A. Service Operation Al Mansoor City 9B/3/7 BAGHDAD Tel: 551-49-73 Telex: 212-455 HEPAIRAQ IK CH.CS

IRELAND

Hewlett-Packard Ireland Ltd. 82/83 Lower Leeson Street **DUBLIN 2** Tel: 0001 608800 Telex: 30439 A,CH,CM,CS,E,M,P Cardiac Services Ltd. Kilmore Road Artane **DUBLIN 5** Tel: (01) 35 1820 Telex: 30439

ISRAEL

Eldan Electronic Instrument Ltd. P.O.Box 1270 JERUSALEM 91000 16 Ohaliay St JERUSALEM 94467 Tel: 533 221, 553 242 Telex: 25231 AB/PAKRD II

Electronics Engineering Division

Motorola Israel Ltd. 16 Kremenetski Street P.O. Box 25016 TEL-AVIV 67899 Tel: 3 88 388 Telex: 33569 Motil IL Cable: BASTEL Tel-Aviv CH,CM,CS,E,M,P

Hewlett-Packard Italiana S.p.A Traversa 99C Via Giulio Petroni, 19 I-70124 BARI Tel: (080) 41-07-44

Hewlett-Packard Italiana S.p.A. Via Martin Luther King, 38/III 1-40132 BOLOGNA Tel: (051) 402394 Telex: 511630 CH.E.MS

Hewlett-Packard Italiana S.p.A. Via Principe Nicola 43G/C I-95126 CATANIA Tel: (095) 37-10-87 Telex: 970291

C,P

Hewlett-Packard Italiana S.p.A. Via G. Di Vittorio 9 1-20063 CERNUSCO SUL NAVIGLIO (Milano)

Tel: (02) 923691 Telex: 334632 A,CH,CM,CS,E,MP,P Hewlett-Packard Italiana S.p.A. Via C. Colombo 49 1-20090 TREZZANO SUL NAVIGLIO (Milano)

Tel: (02) 4459041 Telex: 322116 C.M

Hewlett-Packard Italiana S.p.A. Via Nuova San Rocco a Capodimonte, 62/A I-80131 NAPOLI Tel: (081) 7413544 Telex: 710698 A.CH.E

Hewlett-Packard Italiana S.p.A. Viale G. Modugno 33 I-16156 GENOVA PEGLI Tel: (010) 68-37-07 Telex: 215238 F C

Hewlett-Packard Italiana S.p.A. Via Pelizzo 15 1-35128 PADOVA Tel: (049) 664888 Telex: 430315 A CH F MS Hewlett-Packard Italiana S.p.A. Viale C. Pavese 340

1-00144 ROMA EUR Tel: (06) 54831 Telex: 610514 A.CH.CM.CS.E.MS.P* Hewlett-Packard Italiana S.p.A. Via di Casellina 57/C 1-50018 SCANDICCI-FIRENZE

Tel: (055) 753863 Hewlett-Packard Italiana S.p.A. Corso Svizzera, 185 I-10144 TORINO Tel: (011) 74 4044 Telex: 221079

CH F JAPAN

Yokogawa-Hewlett-Packard Ltd. 152-1, Onna ATSUGI, Kanagawa, 243 Tel: (0462) 28-0451 CM,C*.E Yokogawa-Helwett-Packard Ltd. Meiji-Seimei Bldg. 6F 3-1 Hon Chiba-Cho **CHIBA. 280** Tel: 472 25 7701 E.CH.CS

Yokogawa-Hewlett-Packard Ltd. Yasuda-Seimei Hiroshima Bldg. 6-11, Hon-dori, Naka-ku HIROSHIMA, 730 Tel: 82-241-0611

Yokogawa-Hewlett-Packard Ltd. Towa Building 2-3, Kaigan-dori, 2 Chome Chuo-ku **KOBE**, 650 Tel: (078) 392-4791

C,E

Yokogawa-Hewlett-Packard Ltd. Kumagaya Asahi 82 Bldg 3-4 Tsukuba KUMAGAYA, Saitama 360 Tel: (0485) 24-6563

Yokogawa-Hewlett-Packard Ltd. Asahi Shinbun Daiichi Seimei Bldg. 4-7 Hanabata-cho KUMAMOTO.860

Tel: (0963) 54-7311 CH.F

CH.CM.E

Yokogawa-Hewlett-Packard Ltd. Shin-Kyoto Center Bldg. 614, Higashi-Shiokoji-cho Karasuma-Nishiiru Shiokoji-dori, Shimogyo-ku **KYOTO**, 600 Tel: 075-343-0921 CH.E

Yokogawa-Hewlett-Packard Ltd. Mito Mitsui Bldg 4-73, Sanno-maru, 1 Chome MITO, Ibaraki 310 Tel: (0292) 25-7470 CH.CM.E

Yokogawa-Hewlett-Packard Ltd. Sumitomo Seimei 14-9 Bidg. Meieki-Minami, 2 Chome Nakamura-ku NAGOYA, 450 Tel: (052) 571-5171 CH.CM.CS.E.MS

Yokogawa-Hewlett-Packard Ltd. Chuo Bldg., 4-20 Nishinakajima, 5 Chome Yodogawa-ku **OSAKA**, 532 Tel: (06) 304-6021 Telex: YHPOSA 523-3624

A,CH,CM,CS,E,MP,P Yokogawa-Hewlett-Packard Ltd. 27-15, Yabe, 1 Chome SAGAMIHARA Kanagawa, 229 Tel: 0427 59-1311

Yokogawa-Hewlett-Packard Ltd. Dailchi Seimei Bldg. 7-1, Nishi Shinjuku, 2 Chome Shinjuku-ku, TOKYO 160 Tel: 03-348-4611 CH,E

Yokogawa-Hewlett-Packard Ltd. 29-21 Takaido-Higashi, 3 Chome Suginami-ku TOKYO 168 Tel: (03) 331-611 Telex: 232-2024 YHPTOK A,CH,CM,CS,E,MP,P Yokogawa-Hewlett-Packard Ltd.

Daiichi Asano Building 2-8, Odori, 5 Chome UTSUNOMIYA, Tochigi 320 Tel: (0286) 25-7155 CH.CS.E

Yokogawa-Hewlett-Packard Ltd. Yasuda Seimei Nishiguchi Bldg. 30-4 Tsuruva-cho, 3 Chome YOKOHAMA 221 Tel: (045) 312-1252 CH.CM.E

JORDAN

Mouasher Cousins Company P.O. Box 1387 AMMAN Tel: 24907, 39907 Telex: 21456 SABCO JO CHEMP

KENYA ADCOM Ltd., Inc., Kenya P.O.Box 30070 NAIROBI Tel: 331955 Telex: 22639

F M KOREA

Samsung Electronics HP Division 12 Fl. Kinam Bldg San 75-31, Yeoksam-Dong Kangnam-Ku Yeongdong P.O. Box 72 SEOŬL Tel: 555-7555, 555-5447 Telex: K27364 SAMSAN A,CH,CM,CS,E,M,P

KUWAIT

Al-Khaldiya Trading & Contracting P.O. Box 830 Safat KUWAIT Tel: 42-4910, 41-1726 Telex: 22481 Areea kt CHEM Photo & Cine Equipment P.O. Box 270 Safat KUWAIT Tel: 42-2846, 42-3801

LEBANON G.M. Dolmadiian Achrafieh P.O. Box 165.167 RFIRIT Tel: 290293

Telex: 22247 Matin kt

Computer Information Systems P.O. Box 11-6274 BEIRUT Tel: 89 40 73 Telex: 22259

LUXEMBOURG

Hewlett-Packard Belgium S.A./N.V. Blvd de la Woluwe, 100 Woluwedal B-1200 BRUSSELS Tel: (02) 762-32-00 Telex: 23-494 paloben bru A.CH.CM.CS.E.MP.P

MALAYSIA

Hewlett-Packard Sales (Malaysia) Sdn. Bhd. 1st Floor, Bangunan British American Jalan Semantan, Damansara Heights **KUALA LUMPUR 23-03** Tel: 943022 Telex: MA31011 A,CH,E,M,P*

Arranged alphabetically by country

MAYLAYSIA (Cont'd) Protel Engineering

FOUR Engineering P.O.Box 1917 Lot 6624, Section 64 23/4 Pending Road Kuching, SARAWAK Tel: 3629 Telex: MA 70904 PROMAL Cable: PROTELENG 4 FM

MALTA

Philip Toledo Ltd. Notabile Rd. MRIEHEL Tel: 447 47, 455 66 Telex: Media MW 649

MEXICO

Hewlett-Packard Mexicana, S.A. de C.V. Av. Periferico Sur No. 6501 Tepepan, Xochimilco 16020 MEXICO D.F. Tel: 6-76-46-00 Telex: 17-74-507 HEWPACK MEX A,CH,CS,E,MS,P Hewlett-Packard Mexicana, S.A. de C V Ave. Colonia del Valle 409 Col. del Valle Municipio de Garza Garcia MONTERREY, Nuevo Leon Tel: 78 42 41 Telex: 038 410 **FCISA** José Vasconcelos No. 218 Col. Condesa Deleg. Cuauhtémoc MEXICO D.F. 06140 Tel: 553-1206 Telex: 17-72755 ECE ME

MOROCCO

Dolbeau 81 rue Karatchi CASABLANCA Tel: 3041-82, 3068

Tel: 3041-82, 3068-38 Telex: 23051, 22822 E

Gerep 2 rue d'Agadir Boite Postale 156 CASABLANCA Tel: 272093, 272095 Telex: 23 739

NETHERLANDS Hewlett-Packard Nederland B.V.

A.CH.CS.E

Van Heuven Goedhartlaan 121 NL 1181KK AMSTELVEEN P.O. Box 667 NL 1180 AR AMSTELVEEN Tel: (020) 47-20-21 Telex: 13 216 HEPA NL A,CH,CM,CS,E,MP,P Hewlett-Packard Nederland B.V. Bongerd 2 NL 2906VK CAPELLE A/D IJSSEL P.O. Box 41 NL 2900AA CAPELLE A/D IJSSEL Tel: (10) 51-64-470 IJSSEL Telex: 21261 HEPAC NL

Hewlett-Packard Nederland B.V. Pastoor Petersstraat 134-136 NL 5612 LV EINDHOVEN P.O. Box 2342 NL 5600 CH EINDHOVEN Tel: (040) 326911 Telex: 51484 hepae nl A,CH**,E.M

NEW ZEALAND

Hewlett-Packard (N.Z.) Ltd. 5 Owens Road P.O. Box 26-189 Epsom, AUCKLAND Tel: 687-159 Cable: HEWPACK Auckland CH.CM.E.P*

Hewlett-Packard (N.Z.) Ltd. 4-12 Cruickshank Street Kilbirnie, WELINGTON 3 P.O. BOX 9443 Courtenay Place, WELLINGTON 3 Tel: 877-199 Cable: HEWPACK Wellington CH.CM.E.P

Northrop Instruments & Systems Ltd. 369 Khyber Pass Road P.O. Box 8602

AUCKLAND Tel: 794-091 Telex: 60605

Northrop Instruments & Systems Ltd. 110 Mandeville St. P.O. Box 8388 CHRISTCHURCH Tet: 486-928 Telex: 4203

Northrop Instruments & Systems Ltd. Sturdee House 85-87 Ghuznee Street P.O. Box 2406 WELLINGTON Tel: 850-091 Telex: NZ 3380 A.M

NORTHERN IRELAND See United Kingdom

NORWAY Hewlett-Packard Norge A/S

Folke Bernadottes vei 50 P.O. Box 3558 N-5033 FYLLINGSDALEN (Bergen) Tel: 0047/5/16 55 40 Telex: 16621 hpnas n CH,CS,E,MS Hewlett-Packard Norge A/S

Hewlett-Packard Norge A/S Österndalen 16-18 P.O. Box 34 N-1345 ÖSTERÅS Tel: 0047/2/17 11 80 Telex: 16621 hpnas n A,CH,CM,CS,E,M,P

OMAN

Khimjii Ramdas P.O. Box 19 MUSCAT Tel: 722225, 745601 Telex: 3289 BROKER MB MUSCAT Suhail & Saud Bahwan

P.O.Box 169 MUSCAT Tel: 734 201-3 Telex: 3274 BAHWAN MB PAKISTAN Mushko & Company Ltd. 1-B, Street 43

Sector F-8/1

Tel: 51071 Cable: FEMUS Rawalpindi

A.E.M.
Mushko & Company Ltd.
Oosman Chambers
Abdullah Haroon Road
KARACHI 0302
Tel: 524131, 524132
Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
AF M P'

PANAMA

Electrónico Balboa, S.A. Calle Samuel Lewis, Ed. Alfa Apartado 4929 PANAMA 5 Tel: 63-6613, 63-6748 Telex: 3483 ELECTRON PG ACMEMP.

PERU

Cía Electro Médica S.A. Los Flamencos 145, San Isidro Casilla 1030 LIMA 1 Tel: 41-4325, 41-3703 Telex: Pub. Booth 25306 CMEMP

PHILIPPINES The Online Advanced Systems

Corporation Rico House, Amorsolo Cor. Herrera Street Legaspi Village, Makati P.O. Box 1510 Metro MANILA

Metro MANILA Tel: 85-35-81, 85-34-91, 85-32-21 Telex: 3274 ONLINE A.CH.CS.E.M Electronic Specialists and Proponents

Inc. 690-B Epitanio de los Santos Avenue Cubao, **QUEZON CITY** P.O. Box 2649 Manila Tal: 98-96-81 98-96-82 98-96-83

Tel: 98-96-81, 98-96-82, 98-96-83 Telex: 40018, 42000 ITT GLOBE MACKAY BOOTH

PORTUGAL

Mundinter Intercambio Mundial de Comércio S.A.R.L. P.O. Box 2761 Av. Antonio Augusto de Aguiar 138 P-LISBON Tel: (19) 53-21-31, 53-21-37 Telex: 16691 munter p

Soquimica Av. da Liberdade, 220-2 1298 LISBOA Codex Tel: 56 21 81/2/3 Telex: 13316 SABASA

Telectra-Empresa Técnica de Equipmentos Eléctricos S.A.R.L. Rua Rodrígo da Fonseca 103 P.O. Box 2531 P-LISBON 1 Tel: (19) 68-60-72 Telex: 12598 CH.GS.F.P

PUERTO RICO

Ave. Muñoz Rivera #101
Esq. Calle Ochoa
HATO REY, Pueto Rico 00918
Tel: (809) 754-7800
Hewlett-Packard Pueto Rico
Calle 272 Edificio 203
Urb. Country Club
RIO PIEDRAS, Puerto Rico
P.O. Box 4407
CAROLINA, Puerto Rico 00628
Tel: (809) 762-7255

Hewlett-Packard Puerto Rico

QATAR

Computearbia P.O. Box 2750 DOHA Tel: 883555 Telex: 4806 CHPARB P

Eastern Technical Services P.O.Box 4747 DOHA

Tel: 329 993 Telex: 4156 EASTEC DH Nasser Trading & Contracting P.O.Box 1563 DOHA

Tel: 22170, 23539 Telex: 4439 NASSER DH M

SAUDI ARABIA

Modern Electronic Establishment Hewlett-Packard Division P. O. Box 22015 Thuobah AL-KHOBAR Tel: 895-1760, 895-1764

Tel: 895-1760, 895-1764 Telex: 671 106 HPMEEK SJ Cable: ELECTA AL-KHOBAR CH.CS.E.M

Modern Electronic Establishment Hewlett-Packard Division P.O. Box 1228 Redec Plaza, 6th Floor

JEDDAH
Tel: 644 38 48
Telex: 4027 12 FARNAS SJ
Cable: ELECTA JEDDAH

Modern Electronic Establishment Hewlett-Packard Division P.O.Box 22015 RIYADH Tel: 491-97 15, 491-63 87 Telex: 202049 MEERYD SJ

CH,CS,E,M Abdul Ghani El Ajou P.O. Box 78 RIYADH Tel: 40 41 717 Telex: 200 932 EL AJOU

SCOTLAND See United Kingdom

0111040000

SINGAPORE
Hewlett-Packard Singapore (Sales)
Pie. Ltd.
#08-00 Inchcape House
450-2 Alexandra Road
P.O. Box 58 Alexandra Rd. Post Office
SINCAPORE, 9115
Tel: 631788
Telex: HPSGSO RS 34209
Cable: HEWPACK, Singapore
ACH.CS.E.MS.P

Arranged alphabetically by country

SINGAPORE (Cont'd)
Dynamar International Ltd.

Unit 05-11 Block 6 Kolam Ayer Industrial Estate SINGAPORE 1334 Tel: 747-6188 Telex: RS 26283

SOUTH AFRICA

Hewlett-Packard So Africa (Pty.) Ltd. P.O. Box 120 Howard Place CAPE PROVINCE 7450 Pine Park Center, Forest Drive, Pinelands

CAPE PROVINCE 7405 Tel: 53-7954 Telex: 57-20006 A,CH,CM,E,MS,P

P.O. Box 37099 92 Overport Drive **DURBAN** 4067 Tel: 28-4178, 28-4179, 28-4110 Telex: 6-22954 CH.CM

Hewlett-Packard So Africa (Pty.) Ltd.

Hewlett-Packard So Africa (Pty.) Ltd. 6 Linton Arcade 511 Cape Road

Linton Grange PORT ELIZABETH 6000 Tel: 041-302148 CH

Hewlett-Packard So Africa (Pty.) Ltd. P.O.Box 33345 Glenstantia 0010 TRANSVAAL 1st Floor East Constantia Park Ridge Shopping Centre Constantia Park

PRETORIA Tel: 982043 Telex: 32163 CH.E

Hewlett-Packard So Africa (Pty.) Ltd. Private Bag Wendywood SANDTON 2144 Tel: 802-5111, 802-5125 Telex: 4-20877 Cable: HEWPACK Johannesburg A,CH,CM,CS,E,MS,P

SPAIN

Hewlett-Packard Española S.A. Calle Entenza, 321 E-BARCELONA 29 Tel: 322.24.51, 321.73.54 Telex: 52603 hpbee A,CH,CS,E,MS,P Hewlett-Packard Española S.A. Calle Sap Vicente S/Mo

Calle San Vicente S/No Edificio Albia II E-BILBAO 1 Tel: 423.83.06 A,CH,E,MS

Hewlett-Packard Española S.A. Crta. de la Coruña, Km. 16, 400 Las Rozas E-MADRID

E-MADRID Tel: (1) 637.00.11 CH.CS.M

Hewlett-Packard Española S.A. Avda. S. Francisco Javier, S/no Planta 10. Edificio Sevilla 2, E-SEVILLA 5 Tel: 64.44.54

Tel: 64.44.54 Telex: 72933 A,CS,MS,P Hewlett-Packard Española S.A. Calle Ramon Gordillo, 1 (Entlo.3) E-VALENCIA 10 Tel: 361-1354

SWEDEN

Hewlett-Packard Sverige AB Sunnanvagen 14K S-22226 LUND Tel: (046) 13-69-79 Telex: (854) 17886 (via Spånga office)

Hewlett-Packard Sverige AB Östra Tullgatan 3 S-21128 MALMÖ Tel: (040) 70270 Telex: (854) 17886 (via Spånga

office)
Hewlett-Packard Sverige AB
Våstra Vintergatan 9

S-70344 ÖRÉBRO Tel: (19) 10-48-80 Telex: (854) 17886 (via Spånga office)

Hewlett-Packard Sverige AB Skalholtsgatan 9, Kista Box 19

S-16393 SPÅNGA Tel: (08) 750-2000 Telex: (854) 17886 Telefax: (08) 7527781 A,CH,CM,CS,E,MS,P Hewlett-Packard Sverige AB

Frötallisgatan 30 S-42132 **VÄSTRA-FRÖLUNDA** Tel: (031) 49-09-50 Telex: (854) 17886 (via Spånga

office) CH,E,P

СН

SWITZERLAND Hewlett-Packard (Schweiz) AG

Clarastrasse 12 CH-4058 BASEL Tel: (61) 33-59-20

Hewlett-Packard (Schweiz) AG 7, rue du Bois-du-Lan Case Postale 365 CH-1217 MEYRIN 2 Tel: (0041) 22-83-11-11 Telex:27333 HPAG CH CH.CM.CS

Hewlett-Packard (Schweiz) AG Allmend 2 CH-8967 WIDEN Tel: (0041) 57 31 21 11 Telex: 53933 hpag ch

SYRIA

Cable: HPAG CH

A,CH,CM,CS,E,MS,P

General Electronic Inc. Nuri Basha Ahnal Ebn Kays Street P.O. Box 5781 DAMASCUS Tel: 33-24-87 Telex: 411 215 Cable: ELECTROBOR DAMASCUS Middle East Electronics P.O.Box 2308 Abu Rumnaneh DAMASCUS Tel: 33 4 5 92 Telex: 411 304

TAIWAN

Hewlett-Packard Far East Ltd. Kaohsiung Office 2/F 68-2, Chung Cheng 3rd Road KAOHSIUNG Tel: (07) 241-2318 CH,CS,E

Hewlett-Packard Far East Ltd. Taiwan Branch 8th Floor 337 Fu Hsing North Road TAIPEI

Telex: 24439 HEWPACK

Tel: (02) 712-0404

Cable:HEWPACK Taipei A,CH,CM,CS,E,M,P Ing Lih Trading Co. 3rd Floor, 7 Jen-Ai Road, Sec. 2 TAIRFI 100

Tel: (02) 3948191 Cable: INGLIH TAIPEI

THAILAND Unimesa

30 Palpong Ave., Suriwong BANGKOK 5 Tel: 235-5727 Telex: 84439 Simonco TH Cable: UNIMESA Bangkok A,CH.CS.E.M

Bangkok Business Equipment Ltd. 5/5-6 Dejo Road BANGKOK

Tel: 234-8670, 234-8671 Telex: 87669-BEQUIPT TH Cable: BUSIQUIPT Bangkok

TRINIDAD & TOBAGO

Caribbean Telecoms Ltd. 50/A Jerningham Avenue P.O. Box 732 PORT-OF-SPAIN Tel: 62-44213, 62-44214 Telex: 235,272 HUGCO WG CM.E.M.P

TUNISIA Tunisie Electronique

31 Avenue de la Liberte TUNIS Tel: 280-144 E,P Corema 1 ter. Av. de Carthage TUNIS

Tel: 253-821 Telex: 12319 CABAM TN M

TURKEY
Teknim Company Ltd.
Iran Caddesi No. 7
Kavaklidere, ANKARA
Tel: 275800
Telex: 42155 TKNM TR

E.M.A. Medina Eldem Sokak No.41/6 Yuksel Caddesi ANKARA Tel: 175 622 Telex: 42 591

UNITED ARAB EMIRATES

Emilac Ltd.
P.O. Box 2711
ABU DHAB!
Tel: 82 04 19-20
Cable: EMITAC ABUDHABI
Emilac Ltd.
P.O. Box 1641
SHARJAH
Tel: 591 181
Telex: 68136 Emilac Sh
CHOSE MI

UNITED KINGDOM

GREAT BRITAIN
Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM
Cheshire WA14 1NU
Tel: 061 928 6422
Telex: 668068
A,CH,CS,E,M,MS,P
Hewlett-Packard Ltd.

Eistree House, Eistree Way BOREHAMWOOD, Herts WD6 1SG Tel: 01 207 5000 Telex: 8952716

E,CH,CS,P Hewlett-Packard Ltd. Oakfield House, Oakfield Grove Clifton BRISTOL, Avon BS8 2BN Tal. 0323, 738906

Tel: 0272 736806 Telex: 444302 CH,CS,E,P Hewlett-Packard Ltd.

Bridewell House
Bridewell Place
LONDON EC4V 6BS
Tel: 01 583 6565
Telex: 298163
CH,CS,P

Hewlett-Packard Ltd. Fourier House 257-263 High Street LONDON COLNEY Herts. AL2 1HA, St. Albans Tel: 0727 24400 Telex: 1-8952716

Hewlett-Packard Ltd. Pontefract Road

CH,CS

NORMANTON, West Yorkshire WF6 1RN Tel: 0924 895566

Telex: 557355 CH,CS,P Hewlett-Packard Ltd.

The Quadrangle 106-118 Station Road REDHILL, Surrey RH1 1PS Tel: 0737 68655 Telex: 947234 CH,CS,E,P

Arranged alphabetically by country

GREAT BRITAIN (Cont'd) Hewlett-Packard Ltd. Avon House 435 Stratford Road Shirley, SOLIHULL, West Midlands **B90 4BL** Tel: 021 745 8800 Telex: 339105 CH,CS,E,P Hewlett-Packard Ltd. West End House

41 High Street, West End SOUTHAMPTON Hampshire S03 3D0 Tel: 04218 6767 Telex: 477138 CH CS P

Hewlett-Packard Ltd. Eskdale Rd. Winnersh, WOKINGHAM Berkshire RG11 5DZ Tel: 0734 696622 Telex: 848884

Hewlett-Packard Ltd.

King Street Lane Winnersh, WOKINGHAM Berkshire RG11 5AR Tel: 0734 784774 Telex: 847178 A,CH,CS,E,M,MP,P Hewlett-Packard Ltd Nine Mile Ride Easthampstead, WOKINGHAM Berkshire, 3RG11 3LL Tel: 0344 773100 Telex: 848805 CH,CS,E,P

NORTHERN IRELAND Hewlett-Packard Ltd. Cardiac Services Building 95A Finaghy Road South BELFAST BT 10 0BY

Tel: 0232 625-566 Telex: 747626 CH.CS

SCOTLAND Hewlett-Packard Ltd. SOUTH QUEENSFERRY West Lothian, EH30 9TG Tel: 031 331 1188 Telex: 72682 CH,CM,CS,E,M,P

UNITED STATES

Alabama Hewlett-Packard Co. 700 Century Park South, Suite 128 BIRMINGHAM, AL 35226 Tel: (205) 822-6802 A CH M Hewlett-Packard Co. 420 Wynn Drive HUNTSVILLE, AL 35805 P.O. Box 7700 HUNTSVILLE, AL 35807

Arizona Hewlett-Packard Co. 8080 Pointe Parkway West PHOENIX. AZ 85044 Tel: (602) 273-8000 A,CH,CM,CS,E,MS

Tel: (205) 830-2000

CH,CM,CS,E,M*

Hewlett-Packard Co. 2424 East Aragon Road TUCSON, AZ 85706 Tel: (602) 889-4631 CH.E.MS*

California Hewlett-Packard Co. 99 South Hill Dr. BRISBANE, CA 94005 Tel: (415) 330-2500 CH.CS

Hewlett-Packard Co. P.O. Box 7830 (93747) 5060 E. Clinton Avenue, Suite 102 FRESNO, CA 93727 Tel: (209) 252-9652 CH,CS,MS Hewlett-Packard Co. P.O. Box 4230

1421 South Manhattan Avenue FULLERTON, CA 92631 Tel: (714) 999-6700 CH,CM,CS,E,MP Hewlett-Packard Co. 320 S. Kellogg, Suite B GOLETA, CA 93117

Tel: (805) 967-3405

Hewlett-Packard Co. 5400 W. Rosecrans Boulevard LAWNDALE, CA 90260 P.O. Box 92105 LOS ANGELES, CA 90009 Tel: (213) 970-7500 Telex: 910-325-6608 CH,CM,CS,MP

Hewlett-Packard Co. 3155 Porter Oaks Drive PALO ALTO, CA 94304 Tel: (415) 857-8000

Hewlett-Packard Co. 4244 So. Market Court, Suite A P.O. Box 15976 SACRAMENTO, CA 95852 Tel: (916) 929-7222 A*,CH,CS,E,MS

Hewlett-Packard Co. 9606 Aero Drive P.O. Box 23333 **SAN DIEGO.** CA 92139 Tel: (619) 279-3200 CHICKLICS FIME

Hewlett-Packard Co. 2305 Camino Ramon "C" SAN RAMON, CA 94583 Tel: (415) 838-5900 CH.CS

Hewlett-Packard Co 3005 Scott Boulevard SANTA CLARA, CA 95050 Tel: (408) 988-7000 Telex: 910-338-0586 A.CH.CM.CS.E.MP Hewlett-Packard Co. 5703 Corsa Avenue WESTLAKE VILLAGE, CA 91362

Colorado Hewlett-Packard Co. 24 Inverness Place, East **ENGLEWOOD**, CO 80112 Tel: (303) 649-5000 A,CH,CM,CS,E,MS

Tel: (213) 706-6800 E*.CH*.CS*

Connecticut Hewlett-Packard Co 47 Barnes Industrial Road South P.O. Box 5007 WALLINGFORD, CT 06492 Tel: (203) 265-7801

Florida

A,CH,CM,CS,E,MS

Hewlett-Packard Co. 2901 N.W. 62nd Street P.O. Box 24210 FORT LAUDERDALE. FL 33307 Tel: (305) 973-2600 CH.CS.E.MP Hewlett-Packard Co. 6177 Lake Ellenor Drive P.O. Box 13910

ORLANDO, FL 32859 Tel: (305) 859-2900 A,CH,CM,CS,E,MS Hewlett-Packard Co. 5750B N. Hoover Blvd., Suite 123 P.O. Box 15200 TAMPA, FL 33614

Tel: (813) 884-3282 A*,CH,CM,CS,E*,M*

Georgia

Hewlett-Packard Co. 2000 South Park Place P.O. Box 105005 ATLANTA, GA 30348 Tel: (404) 955-1500 Telex: 810-766-4890 A.CH.CM.CS.E.MP

Hewlett-Packard Co. Kawaiahao Plaza, Suite 190 567 South King Street HONOLULU, HI 96813 Tel: (808) 526-1555 A,CH,E,MS

Illinois

Hewlett-Packard Co. 304 Eldorado Road P.O. Box 1607 BLOOMINGTON, IL 61701 Tel: (309) 662-9411 CH,MS**

Hewlett-Packard Co. 1100 31st Street, Suite 100 **DOWNERS GROVE, IL 60515** Tel: (312) 960-5760 CH,CS

Hewlett-Packard Co. 5201 Tollview Drive **ROLLING MEADOWS, IL 60008** Tel: (312) 255-9800 Telex: 910-687-1066 A,CH,CM,CS,E,MP

Indiana

Hewlett-Packard Co. 7301 No. Shadeland Avenue P.O. Box 50807 INDIANAPOLIS, IN 46250 Tel: (317) 842-1000 A.CH.CM.CS.E.MS

lowa

Hewlett-Packard Co. 1776 22nd Street, Suite 1 WEST DES MOINES, IA 50265 Tel: (515) 224-1435 CH,MS**

Kansas

Hewlett-Packard Co. 7804 East Funston Road, #203 WICHITA, KS 67207 Tel: (316) 684-8491

Kentucky

Hewlett-Packard Co. 10300 Linn Station Road, #100 LOUISVILLE KY 40223 Tel: (502) 426-0100 A.CH.CS.MS

Louisiana

Hewlett-Packard Co. 160 James Drive East ST. ROSE, LA 70087 P.O. Box 1449 KENNER, LA 70063 Tel: (504) 467-4100 A,CH,CS,E,MS

Maryland

Hewlett-Packard Co. 3701 Koppers Street BALTIMORE, MD 21227 Tel: (301) 644-5800 Telex: 710-862-1943 A,CH,CM,CS,E,MS Hewlett-Packard Co. 2 Choke Cherry Road ROCKVILLE, MD 20850 Tel: (301) 948-6370 A,CH,CM,CS,E,MP

Massachusetts Hewlett-Packard Co. 1775 Minuteman Road ANDOVER, MA 01810 Tel: (617) 682-1500 A.C.CH.CS.CM.E.MP.P* Hewlett-Packard Co. 32 Hartwell Avenue LEXINGTON, MA 02173 Tel: (617) 861-8960

CH.CS.E Michigan

Hewlett-Packard Co. 4326 Cascade Road S.E. **GRAND RAPIDS, MI 49506** Tel: (616) 957-1970 CH,CS,MS Hewlett-Packard Co. 1771 W. Big Beaver Road TROY, MI 48084 Tel: (313) 643-6474

Minnesota Hewlett-Packard Co. 2025 W. Larpenteur Ave. ST. PAUL, MN 55113 Tel: (612) 644-1100

A,CH,CM,CS,E,MP Missouri

CH,CS

Hewlett-Packard Co. 11131 Colorado Avenue KANSAS CITY, MO 64137 Tel: (816) 763-8000 A,CH,CM,CS,E,MS Hewlett-Packard Co. 13001 Hollenberg Drive BRIDGETON, MO 63044 Tel: (314) 344-5100 A,CH,CS,E,MP

Arranged alphabetically by country

UNITED STATES (Cont'd)

Nebraska Hewlett-Packard 10824 Old Mill Rd., Suite 3 OMAHA, NE 68154 Tel: (402) 334-1813

New Jersey

CM MS

Hewlett-Packard Co. 120 W. Century Road PARAMUS, N. 07652 Tel: (201) 265-5000 A.CH.CM.CS.E.MP Hewlett-Packard Co. 60 New England Av. West PISCATAWAY, NJ 08854 Tel: (201) 981-1199 A.CH.CM.CS.E

New Mexico Hewlett-Packard Co. 11300 Lomas Blvd., N.E. P.O. Box 11634 ALBUQUERQUE, NM 87112 Tel: (505) 292-1330

CH,CS,E,MS

New York

Hewlett-Packard Co.

5 Computer Drive South

ALBANY, NY 12205 Tel: (518) 458-1550 A.CH,E,MS

Hewlett-Packard Co. 9600 Main Street P.O. Box AC CLARENCE, NY 14031 Tel: (716) 759-8621

Hewlett-Packard Co. 200 Cross Keys Office Park FAIRPORT, NY 14450 Tel: (716) 223-9950 CH,CM,CS,E,MS

Hewlett-Packard Co. 7641 Henry Clay Blvd. LIVERPOOL, NY 13088 Tel: (315) 451-1820 A.CH.CM.E.MS

Hewlett-Packard Co. No. 1 Pennsylvania Plaza 55th Floor 34th Street & 8th Avenue MANHATTAN NY 10119

Tel: (212) 971-0800 CH,CS,E*,M* Hewlett-Packard Co.

250 Westchester Avenue WHITE PLAINS, NY 10604 Tel: (914) 684-6100 CM,CH,CS,E

Hewlett-Packard Co. 3 Crossways Park West WOODBURY, NY 11797 Tel: (516) 921-0300 A.CH.CM.CS.E.MS

North Carolina Hewlett-Packard Co. 5605 Roanne Way P.O. Box 26500 GREENSBORO, NC 27420 Tel: (919) 852-1800

A,CH,CM,CS,E,MS

Ohio

Hewlett-Packard Co. 9920 Carver Road CINCINNATI, OH 45242 Tel: (513) 891-9870 CH,CS,MS Hewlett-Packard Co. 16500 Sprague Road CLEVELAND, OH 44130 Tel: (216) 243-7300 A,CH,CM,CS,E,MS Hewlett-Packard Co. 962 Crupper Ave. COLUMBUS, OH 43229 Tel: (614) 436-1041 Eff: Nov. 25, 1983 675 Brooksedge Blvd

WESTERVILLE, OH 43081 CH,CM,CS,E* Hewlett-Packard Co. 330 Progress Rd. DAYTON, OH 45449 Tel: (513) 859-8202

A.CH.CM.E*.MS

Oklahoma Hewlett-Packard Co. 304 N. Meridian, Suite A P.O. Box 75609 OKLAHOMA CITY, OK 73147 Tel: (405) 946-9499

A*,CH,E*,MS Hewlett-Packard Co. 3840 S. 103rd E. Avenue, #100 P.O. Box 35747 TULSA, OK 74153 Tel: (918) 665-3300

A**,CH,CS,M*
Oregon

Hewlett-Packard Co. 9255 S. W. Pioneer Court P.O. Box 328 WILSONVILLE, OR 97070 Tel: (503) 682-8000 A.CH.CS.E*,MS

Pennsylvania Hewlett-Packard Co. 111 Zeta Drive PITTSBURGH, PA 15238 Tel: (412) 782-0400 A,CH,CS,E,MP Hewlett-Packard Co. 2750 Monroe Boulevard P.O. Box 713 VALLEY FORGE, PA 19482 Tel: (215) 666-9000 A,CH,CM,E,M

South Carolina Hewlett-Packard Co. Brookside Park, Suite 122 1 Harbison Way P.O. Box 21708 COLUMBIA, SC 29221 Tel: (803) 732-0400

Hewlett-Packard Co. Koger Executive Center Chesterfield Bldg., Suite 124 GREENVILLE, SC 29615 Tel: (803) 297-4120

Tennessee

Hewlett-Packard Co. 224 Peters Road, Suite 102 P.O. Box 22490 KNOXVILLE, TN 37922 Tel: (615) 691-2371 A*,CH,MS Hewlett-Packard Co. 3070 Directors Row MEMPHIS, TN 38131 Tel: (901) 346-8370 A,CH,MS

Texas Hewlett-Packard Co. 4171 North Mesa Suite C-110 EL PASO, TX 79902 Tel: (915) 533-3555 CH,E*,MS** Hewlett-Packard Co.

10535 Harwin Drive P.O. Box 42816 HOUSTON, IX 77042 Tel: (713) 776-6400 A.CH.CM,CS,E,MP Hewlett-Packard Co. 930 E. Campbell Rd. P.O. Box 1270 Tel: (214) 231-6101 A.CH.CM,CS,E,MP Hewlett-Packard Co.

1020 Central Parkway South P.O. Box 32993 SAN ANTONIO, TX 78216 Tel: (512) 494-9336

CH,CS,E,MS

Utah

Hewlett-Packard Co.
3530 W. 2100 South
SALT LAKE CITY, UT 84119

Tel: (801) 974-1700 A,CH,CS,E,MS Virginia Hewlett-Packard Co. 4305 Cox Road

4305 Cox Road GLEN ALLEN, VA 23060 P.O. Box 9669 RICHMOND, VA 23228 Tel: (804) 747-7750 A,CH,CS,E,MS

Washington Hewlett-Packard Co. 15815 S.E. 37th Street BELLEVUE, WA 98006 T.E. (206) 643-4000 A.C.H.CM.,CS.E.MP Hewlett-Packard Co. Suite A 708 North Argonne Road SPOKANE, WA 99212 Tel: (509) 922-7000 CH.CS

West Virginia
Hewlett-Packard Co.
4604 MacCorkle Ave.
P.O. Box 4297
CHARLESTON, WV 25304
Tel: (304) 925-0492
A MS

Wisconsin Hewlett-Packard Co. 150 S. Sunny Stope Road BROOKFIELD, WI 53005 Tel: (414) 784-8800 A.CH.OS.E*.MP URUGUAY

Pablo Ferrando S.A.C. e I. Avenida Italia 2877 Casilla de Correo 370 MONTEVIDEO Tel: 80-2586 Telex: Public Booth 901 ACM F M

VENEZUELA

3RA Transversal Los Ruices Norte Edificio Segre 1, 2 & 3 Apartado 50933 CARACAS 1071 Tel: 239-4133 Telex: 251046 HEWPACK A,CH,CS,E,MS,P Hewlett-Packard de Venezuela C.A. Calle-72-Entre 3H y 3Y, No. 3H-40 Edificio Ada-Evelyn, Local B Apartado 2646 4001, MARACAIBO, Estado Zulia Tel: (061) 80.304 CF*

Hewlett-Packard de Venezuela C.A.

Hewlett-Packard de Venezuela C.A. Calle Vargas Rondon Edificio Seguros Carabobo, Piso 10 VALENCIA

Tel: (041) 51 385 CH,CS,P

Bioelectronica Medica C.A.
Calle Buen Pastion
Edit. Cota Mil-Piso 2 y Semi Sotano 1
Boleita Norte
Apartado 50710 CARACAS 1050A
Tel: 239 84 41

Telex: 26518

ZIMBABWE
Field Technical Sales
45 Kelvin Road, North
P.B. 3458
SALISBURY
Tel: 705 231
Telex: 4-122 RH
C.E.M.P

July 1983 5952-6900

Indicates main office

HP distributors are printed in italics.

For more information call your local HP sales office listed in the telephone directory white pages. Ask for the Components Department. Or write to Hewlett-Packard: U.S.A. — P.O. Box 10301, Palo Alto, CA 94303-0890. Europe — P.O. Box 999 1180 AZ Amstelveen, The Netherlands, Canada — 6877 Goreway Drive, Mississauga, L4V 1M8, Ontario. Japan — Yokogawa-Hewlett-Packard Ltd., 3-29-21, Takaido-Higashi, Suginami-ku, Tokyo 168. Elsewhere in the world, write to Hewlett-Packard Intercontinental, 3495 Deer Creek Road, Palo Alto, CA 94304.

Printed in U.S.A.